標題: 透過兩個可自由旋轉及變焦的攝影機來重建歐幾里德空間
Euclidean space reconstruction from two freely rotating and zooming uncalibrated cameras
作者: 鄭張鎧
kit cheng-chang
胡竹生
Jwu-Sheng Hu
電控工程研究所
關鍵字: 歐幾里德重建;基本矩陣;極線幾何;自我校正;Euclidean Reconstruction;Fundamental Matrix;Epipolar Geometry;Self calibraration
公開日期: 2002
摘要: 我們將會討論採取如何策略來估算空間的資訊,為了達到即時應用的最終目地我們將利用快速有效率的SUSAN找出空間中重要特徵點,並先建立簡單的對應關係,因為對應關係的求取在電腦視覺中是一個十分困難的問題,所以我們求取估來的對應關係相當的不穩定,所以我們將採用Zhang所提出的方法: 利用強健的方法篩除不正確的對應關係,並建立兩攝影機擷取的左右兩影像平面的極線幾何關係。接下來的問題便是如何從影像平面的極線幾何關係中求取空間中兩攝影機的相對應關係:旋轉及位移,要解決這個問題之前必須先對兩攝影機分別作自我校正的動作,因為兩部攝影機都具有可自我旋轉轉的功能,所以我們可以透過攝影機的自我旋轉來達到校正的目的,我們將會考慮攝影機內部參數固定與不固定的情況,最後我們可以透過攝影機的內部參數及外部參數,求出兩攝影的的相對關係,並重建兩相機的投影矩陣,藉此重構出整個三維空間場景。
We will discuss how to estimate the Euclidean space information. In order to achieve the ultimate goal of real-time applications, we will use a fast and efficient algorithm SUSAN to extract the important features of the targets. The matching problem is important and difficult in computer vision science. We will use a robust technique to remove the outliers and recover the epipolar geometry from two uncalibrated cameras. Furthermore, we will discuss how to estimate the relationship of two cameras (rotation and translation). To solve this problem, the cameras must perform self calibration first. So we consider two cameras which can be used thru self-rotation to estimate internal parameters. We will discus two cases: stationary internal parameters and varying internal parameters. Finally, we have internal parameters and external parameters. And we can estimate the Euclidean space information by reconstructing Euclidean space project matrix.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT910591034
http://hdl.handle.net/11536/71019
Appears in Collections:Thesis