Full metadata record
DC FieldValueLanguage
dc.contributor.author黃至賢en_US
dc.contributor.authorChih-hsien Huangen_US
dc.contributor.author謝文峰en_US
dc.contributor.authorWen-Feng Hsiehen_US
dc.date.accessioned2014-12-12T02:31:52Z-
dc.date.available2014-12-12T02:31:52Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910614030en_US
dc.identifier.urihttp://hdl.handle.net/11536/71113-
dc.description.abstract利用K.P理論推導光子在光子晶體之現象,發現光在周期性的介電物質中會造成光具有慣性質量,而光被侷限在缺陷中就好像粒子被侷限在位能井裡。在一維無限小的缺陷中,光能被侷限在裡面;而在二維和三維中缺陷中,卻需要足夠大的缺限陷才能侷限光。當要計算光侷限在缺陷中的性質時,我們可以從實驗或其他數值模擬得到等效慣性質量,在將這些係數代入雙能帶的 理論可以準確的計算出光在一維或二維異質結構的光子晶體中侷陷能量。當其他的數值解中只能解出結果卻很難去分出析, 理論提供了一個解析的來方法來解馬克斯威爾方程式,而且讓我們很容易解釋和預測一些光在光子晶體中的現象。zh_TW
dc.description.abstractUsing the K.P theory into photonic crystals (PCs), the photon excites an inertial mass form the periodic background. The phenomenon that the light trapped in the defect is similar to the particle trapped in the potential. Any arbitrary small defect will bind a state in 1-D defect, but a finite disorder is needed to bind a state in 2-D or 3-D defects. When we calculate the properties of the defects, the effective inertial mass can be gotten from the experiments or the simulation results from numerical methods of bulk PCs. Introducing the parameter into two-band model of K.P theory in the heterosturcture of PCs, the envelop function and the bound state energy can be solving quite correctly no matter in 1-D PCs or 2-D PCs. The K.P method provides an analytic method to solve the Maxwell’s equation in PCs, and by the method, we can predict and explain the trapping phenomenon of the PCs with defect whereas other numerical simulation methods just can tell us just a simulation result.en_US
dc.language.isoen_USen_US
dc.subject光子晶體zh_TW
dc.subjectK.P理論zh_TW
dc.subject缺陷zh_TW
dc.subjectphotonic crystalen_US
dc.subjectK.P theoryen_US
dc.subjectdefecten_US
dc.titleK.P理論在光子晶體上的應用zh_TW
dc.titleThe K.P theory in photonic crystalsen_US
dc.typeThesisen_US
dc.contributor.department光電工程學系zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 061403001.pdf
  2. 061403002.pdf
  3. 061403003.pdf
  4. 061403004.pdf
  5. 061403005.pdf
  6. 061403006.pdf
  7. 061403007.pdf
  8. 061403008.pdf
  9. 061403009.pdf
  10. 061403010.pdf
  11. 061403011.pdf
  12. 061403012.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.