Full metadata record
DC FieldValueLanguage
dc.contributor.author張祐華en_US
dc.contributor.authorChang, Yu-Huaen_US
dc.contributor.author陳鄰安en_US
dc.contributor.authorChen, Lin-Anen_US
dc.date.accessioned2014-12-12T02:32:37Z-
dc.date.available2014-12-12T02:32:37Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070052616en_US
dc.identifier.urihttp://hdl.handle.net/11536/71471-
dc.description.abstract對基因表現分析來說,經由偵測疾病組樣本的離群值來發現對其有影響力的基因,是一個很新而且很重要的方法。不幸的是,我們在文獻裡找到,為了建構回歸模型而發展出的離群值最小平方法估計量,它的影響函數(influence function)無法限制住對獨立變數的影響。為了建構線性回歸模型,我們用Mallow's type 離群值有界影響最小平方法估計量及離群值回歸分位數的漸進分布,產生出一個影響函數(influence function)在獨立變數空間是有界的統計方法。由蒙地卡羅模擬比較均方差的結果顯示,當過失誤差(gross error)在獨立變數空間發生時,有界影響的估計量比無界影響的更有效。zh_TW
dc.description.abstractDiscovering the infl?uential genes through the detection of outliers in sam?ples from disease group subjects is a very new and important approach for gene expression analysis? Technique of outlier least squares estimator for re?gression model has been found in literature that? unfortunately? its in?fluence function can not limit the e?ect of independent variables? We present as?ymptotic distributions of the mallow?s type bounded? infl?uence outlier least squares estimator and outlier regression quantile for linear regression mod?els producing statistical techniques with infl?uence functions bounded in the space of independent variables? Monte Carlo simulations comparing mean squared errors show that the bounded? infl?uence ones are more effcient than the unbounded? infl?uence ones when gross errors occur in the independent? variable? space?en_US
dc.language.isoen_USen_US
dc.subject基因表現分析zh_TW
dc.subject影響函數zh_TW
dc.subject最小平方法估計量zh_TW
dc.subject線性回歸zh_TW
dc.subject回歸分位數zh_TW
dc.subjectGene expression analysisen_US
dc.subjectin?uence functionen_US
dc.subjectleast squares esti?mationen_US
dc.subjectlinear regressionen_US
dc.subjectregression quantileen_US
dc.title基因表現分析之穩健回歸估計量zh_TW
dc.titleRobust Regression Estimators in Gene Expression Analysisen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 261601.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.