Full metadata record
DC FieldValueLanguage
dc.contributor.author徐志杰en_US
dc.contributor.authorHsu, Chih-chiehen_US
dc.contributor.author翁志文en_US
dc.contributor.authorWeng, Chih-Wenen_US
dc.date.accessioned2014-12-12T02:32:55Z-
dc.date.available2014-12-12T02:32:55Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070052226en_US
dc.identifier.urihttp://hdl.handle.net/11536/71598-
dc.description.abstract假設G 是一個由點1,2,…,n 所構成的簡單圖,其中每個點相對應的價數 分別為d1,d2,…,dn..設A(G) 是G 的 (0,1)-鄰接矩陣,D(G) 是一個對角 矩陣,其對角線上分別是d1,d2,…,dn..矩陣L(G)=D(G)-A(G) 稱為G 的 拉普拉斯矩陣,矩陣 |L|(G)=D(G)+A(G) 稱為G 的無號拉普拉斯矩陣.. A(G),L(G),|L|(G) 的特徵值給了我們很多訊息去了解G 的構造..在這個論 文中,我們研究一種圖形叫做三角形棒棒糖圖,其由一個三個點的完全圖與 一個路徑圖共用一點而接起來..我們探討三角形棒棒糖圖的無號拉普拉斯矩 陣的特徵值..特徵多項式及它們的相關比較問題..zh_TW
dc.description.abstractLet G be a simple graph with vertices 1,...,n of degrees d1,...,dn respectively. Let A(G) be the (0,1)-adjacency matrix of G, and let D(G) be the diagonal matrix diag(d1,...,dn). The matrix L(G)=D(G)−A(G) is the Laplacian matrix of G, while |L|(G)=D(G)+A(G) is called the signless laplacian matrix of G. The eigenvalues of A(G), L(G), and |L|(G) give many hints to the structure of G. In this thesis we study a class of graphs, called lollipop graph with a triangle, which are obtained from paths by adding a new vertex to a path and adding two edges from the new vertex to one end of the path and to the neighbor of this end, forming a triangle K3. We study the signless Laplacian eigenvalues and characteristic polynomial of lollipop graphs with K3.en_US
dc.language.isoen_USen_US
dc.subject棒棒糖圖zh_TW
dc.subject無號拉普拉斯矩陣zh_TW
dc.subject特徵值zh_TW
dc.subjectlollipop graphen_US
dc.subjectsignless laplacian matrixen_US
dc.subjecteigenvalueen_US
dc.title三角形棒棒糖圖的無號拉普拉斯矩陣之特徵值探討zh_TW
dc.titleSignless laplacian spectrum of a lollipop graph with a triangleen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 222601.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.