标题: | 应用市场轮廓理论于CPPI与TIPP资产组合保险方法之整合分析 Applying Market Profile on Integrating CPPI with TIPP of Portfolio Insurance Policy |
作者: | 柯孟君 Ko, Meng-Chun 陈安斌 Chen, An-Pin 资讯管理研究所 |
关键字: | 基因演算法;投资组合保险策略;固定比例投资组合保险策略;时间无关投资组合保护策略;市场轮廓;摆动因子;Genetic Algorithm;Portfolio Insurance Policy;CPPI;TIPP;Market Profile;Rotation Factor |
公开日期: | 2012 |
摘要: | 本研究以市场轮廓理论为基础,利用摆动因子企图整合固定比例投资组合保险策略与时间无关投资组合保护策略,以台湾50指数成分股为例,利用基因演算法最佳化固定比例投资组合保险策略与时间无关投资组合保护策略,结合摆动因子动态的调整每期的杠杆乘数、投资组合保险策略及风险部位的投资组合。 在基因演算法的适应函数部分提出报酬率与Sharpe Ratio两种模式,为使有效选择投资组合保险策略,摆动因子部分提出以摆动因子差值、摆动因子平均、摆动因子斜率,共六种模型,最后并比较单纯固定比例投资组合保险策略与时间无关投资组合保护策略投资效益及准确率之差异性。 本研究提出应用市场轮廓理论之摆动因子解释市场行为,尝试进行主动式动态CPPI与TIPP投资组合保险策略之研究,经实验分析与检定后得出使用摆动因子动态模型优于只使用CPPI与TIPP之投资组合保险策略。保本底限较高时,当适应函数为报酬率时风险溢酬优于适应函数为Sharpe Ratio;在保本底限较低时,当适应函数为Sharpe Ratio时风险溢酬优于适应函数为报酬率。在曝险程度较高时,摆动因子皆能有效增加报酬;在曝险程度较低时,摆动因子差值跟平均的动态模型绩效较佳。 The research is based on Market Profile, Conformation of CPPI and TIPP by using rotation factor, taking FTSE TWSE Taiwan 50 Index for example, it simulate CPPI and TIPP by using Genetic Algorithm, which combines the dynamic adjustment of rotation factor for Multiplier, Portfolio Insurance Policy and Portfolio of Exposure. It presents two models, which are Return and Sharpe ratio, in Fitness Function of Genetic Algorithm. For choosing Portfolio Insurance Policy, it figured out that unit as one year, average of six months and slope of six months, there are six models totally. Finally, it also compared the difference from efficiency and accuracy in CPPI and TIPP. It is proved by experiment, Conformation of CPPI and TIPP by using rotation factor better then CPPI and TIPP. In conclusion, at high floor, return is superior Sharpe Ratio in the risk premium; at lower floor, Sharpe Ratio is superior return in the risk premium. In a higher degree of exposure, the rotation factor increase the return effectively; at lower exposure levels, the rotation factor difference and average of the dynamic model performance is better. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070053401 http://hdl.handle.net/11536/71649 |
显示于类别: | Thesis |