标题: | 基于线上递回式独立成分分析以及眼动杂讯自动去除机制之即时多通道脑波撷取系统晶片设计 A System on Chip Design of Online Recursive ICA Based Real-time Multi-channel EEG Acquisition System with Automatic Eye Blink Artifacts Rejection |
作者: | 廖瑞杰 Liao, Jui-Chieh 方伟骐 Fang, Wai-Chi 电子工程学系 电子研究所 |
关键字: | 脑波撷取;线上递回式;独立通道成分分析;眨眼杂讯;及时处理;晶片实践;系统晶片设计;Online recursive;ICA;EEG acquisition;eye-blink artifact;real-time;chip implementation;system on chip design |
公开日期: | 2012 |
摘要: | 在此篇论文中,我们提出了一个基于线上递回式独立成分分析以及眼动杂讯自动去除机制之即时多通道脑波撷取系统晶片设计。脑波讯号是非常微弱的电讯号,故在撷取脑波的过程,经常受到非脑波成份的电讯号干扰。前人利用独立通道成分分析演算法从一段时间的脑波讯号中萃取出包含于脑波讯号中的杂讯。经过独立通道成分分析的处理过后,我们可以去除含有杂讯的通道,来重建出不含非脑内成分的脑波讯号。 近来,脑机介面(BCI)蓬勃发展。这类的介面使人可以经过大脑直接控制机器。为了增加此类介面的发展性,以及其运作的稳定性、正确性,即时的撷取到不含非脑内成分的脑电讯号是个重要的课题。 线上递回式独立成分分析这样的演算法,提供了我们一个即时杂讯萃取的机制,此独立通道成分分析演算法能在每次脑波讯号由前端撷取器完成取样后,随即完成独立通道成分分析的演算,因此非脑内成分的杂讯能够及时的被萃取出来。因为这样即时萃取杂讯的特性,在此设计中我们使用了这个演算法来增加此系统的即时性。 干扰脑波撷取的杂讯大致上可分为两类:人类自发性的电波干扰,以及外在环境的电杂讯干扰。由于眼睛相当靠近大脑的位置,故在这些干扰中,又以眨眼时所造成的电波干扰最强。因此在此设计中,我们针对这样的干扰进行去除。现今的演算法中,虽然具备了自动去除眨眼杂讯的机制,但无法使我们完全利用到线上递回式独立成分分析的即时性。在此设计中,我们利用了前人提出的演算法,对演算的流程进行修改,使其能完全搭配线上递回式独立通道成分分析进行即时的眨眼讯号去除。另外,前人所提出的演算方式,可能因为眨眼讯号处在边界时出现判断失误的情况。而我们所提出的即时运算流程,亦解决了此类的判断失误。 此设计已实现于TSMC 90 nm COMS 制程,其核心所占的面积为1200 × 1200 μm2。由于共用资源的提供,使得此项设计晶片面积的使用效率比起先前的设计更加突出。也由于使用了及时的运算机制,每个脑波讯号能于其取样后的0.2638秒内得到不含眨眼杂讯的脑波讯号,在此论文中我们亦提供了评估此系统效能的方式,另外我们亦使用真实的脑波进行处理,结果显示,经过此系统的处理后,眨眼所造成的肌电杂讯确实的被去除。 This thesis presents a system on chip design of online recursive ICA based real-time multi-channel EEG acquisition system with automatic eye blink artifacts rejection. EEG signal is one of the feeblest physiological electrical signals. It is easily contaminated by artifacts caused by noncerebral electrical activity. Previously, ICA was used to extract artifacts from a time period of EEG data. After processing of ICA, automatic artifact detection and elimination were performed. Then, artifact free EEG signals can be reconstructed. Recently, brain computer interfaces (BCIs) are developed to control machines through EEG directly. In order to enhance the feasibility, reliability, and accuracy of BCIs, EEG signals used for BCI applications should be acquired from human without artifacts in real-time. For the real-time requirement, online recursive ICA (ORICA) is adopted for real-time artifacts extraction because it can immediately find the ICA result right after each EEG sample. There are two kinds of artifacts. The one which is caused from the inside of the human body is called as biological artifacts. The other one which is caused from outside of the human body is named as environment artifacts. Since the eyes of human are very close to brain, eye blink artifact is one of the most harmful artifact to EEG signals. Therefore, in this work we focus on automatic eye blink artifact elimination and the algorithm used for eye blink artifact detection is sample entropy. In order to fully take advantage of ORICA, the real-time processing flow is proposed to automatically remove the eye blink artifact without detection misses in real-time. The system with these algorithms and the proposed real-time processing flow are implemented on a chip using TSMC 90nm CMOS technology. Since the good hardware sharing arrangement, the core size, which is 1200 × 1200 μm2, is lower than previous work even though containing additional eye blink artifact rejection. With the proposed real-time processing flow, artifact free EEG signals are acquired in 0.2638 s after each EEG sample. The performance of eye blink artifact elimination is evaluated through correlation coefficient between original artifact free EEG signals and processed artifact free EEG signal which is 0.9135 on average. The processed results with real EEG signals are also provided and shown to remove eye blink artifacts exactly. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079911626 http://hdl.handle.net/11536/71700 |
显示于类别: | Thesis |