Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 成澤仕軒 | en_US |
dc.contributor.author | Narisawa, Shinoki | en_US |
dc.contributor.author | 賴明治 | en_US |
dc.contributor.author | Lai, Ming-Chih | en_US |
dc.date.accessioned | 2014-12-12T02:33:10Z | - |
dc.date.available | 2014-12-12T02:33:10Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT070052207 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/71711 | - |
dc.description.abstract | 本文提出一個數值計算方法去求解變動曲面上的對流擴散方程。利用水平集函數捕捉變動曲面。根據最近點方法,利用最近點將對流擴散方程延拓到曲面附近的小區域,並且在這小區域上用Crank-Nichoson方法求解嵌入方程。 | zh_TW |
dc.description.abstract | We propose a numerical method to solving convection-diffusion equation on a moving surface. We use the level set function to capture the deforming surface. Based on the closest point method, we extend the convection-diffusion equation into a small neighborhood of the surface by closest point, and use Crank-Nicolson scheme to solving the embedding PDE on the neighborhood of the surface. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 對流擴散方程 | zh_TW |
dc.subject | 變動曲面 | zh_TW |
dc.subject | 最近點方法 | zh_TW |
dc.subject | 水平集方法 | zh_TW |
dc.subject | convection-diffusion equation | en_US |
dc.subject | moving surface | en_US |
dc.subject | closest point method | en_US |
dc.subject | level set method | en_US |
dc.title | 隱式最近點方法求解在變動曲面上的對流擴散方程 | zh_TW |
dc.title | An implicit closest point method for solving convection-diffusion equations on a moving surface | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.