Full metadata record
DC FieldValueLanguage
dc.contributor.author成澤仕軒en_US
dc.contributor.authorNarisawa, Shinokien_US
dc.contributor.author賴明治en_US
dc.contributor.authorLai, Ming-Chihen_US
dc.date.accessioned2014-12-12T02:33:10Z-
dc.date.available2014-12-12T02:33:10Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070052207en_US
dc.identifier.urihttp://hdl.handle.net/11536/71711-
dc.description.abstract本文提出一個數值計算方法去求解變動曲面上的對流擴散方程。利用水平集函數捕捉變動曲面。根據最近點方法,利用最近點將對流擴散方程延拓到曲面附近的小區域,並且在這小區域上用Crank-Nichoson方法求解嵌入方程。zh_TW
dc.description.abstractWe propose a numerical method to solving convection-diffusion equation on a moving surface. We use the level set function to capture the deforming surface. Based on the closest point method, we extend the convection-diffusion equation into a small neighborhood of the surface by closest point, and use Crank-Nicolson scheme to solving the embedding PDE on the neighborhood of the surface.en_US
dc.language.isoen_USen_US
dc.subject對流擴散方程zh_TW
dc.subject變動曲面zh_TW
dc.subject最近點方法zh_TW
dc.subject水平集方法zh_TW
dc.subjectconvection-diffusion equationen_US
dc.subjectmoving surfaceen_US
dc.subjectclosest point methoden_US
dc.subjectlevel set methoden_US
dc.title隱式最近點方法求解在變動曲面上的對流擴散方程zh_TW
dc.titleAn implicit closest point method for solving convection-diffusion equations on a moving surfaceen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 220701.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.