標題: | 以奈米表面調控C6星狀膠細胞的神經網交聯 Nano-topologic control of astrocytic syncytium in C6 glioma |
作者: | 鄭雅文 Cheng, Ya-Wen 黃國華 材料科學與工程學系奈米科技碩博士班 |
關鍵字: | 神經網;星狀膠細胞;奈米點陣列;synctium;astrocyte;nanodot array |
公開日期: | 2012 |
摘要: | 神經系統的調控主要決定於神經星狀膠細胞的網狀交聯程度,本研究藉由奈米結構控制神經星狀膠細胞通道蛋白Connexin43 (Cx43)的表現,進而調控神經系統的微環境。神經系統微環境的調控與神經細胞的生長及傳導息息相關。然而,有效、準確的操控生長微環境的變化是一項艱鉅的工程。本研究將大鼠神經膠質瘤細胞株(C6)培養在大小系列改變(10-200奈米)的點陣列環境中,檢視神經膠細胞對外在奈米微環境的感測反應,並觀察結構對神經膠細胞與神經膠細胞間交互作用的影響。研究結果顯示,系列奈米結構可有效調控神經星狀膠細胞的存活率、細胞型態、骨架結構、貼附因子以及神經網狀交聯程度,其中50 奈米點陣列於上述細胞生理表徵分別造成198 %、200 %、85 %、140 %、180 %的改善。於西方墨點法與免疫螢光染色的結果呈現,10 和50 奈米點陣列顯著刺激Cx43 通道蛋白的表現量,並加速其蛋白分佈的進程;在同等觀察時間內(3天),100 和200 奈米點陣列上Cx43的分佈依然停留在細胞核周圍,顯示奈米結構有效調控神經膠細胞間的訊息傳遞蛋白。總括上述,奈米點陣列刺激不僅調控神經膠細胞的細胞生理作用,同時也影響神經膠細胞間的交互作用及訊息傳導。未來,藉由改變神經細胞生理行為來進行生長環境的優化,進而調控神經系統細胞間的相互作用,改善現有神經系統植入物的缺失。 The communication in nervous system is mainly determined by astrocytic network, in this study, gap junction channels (GJCs) protein of Connexin43 (Cx43) expression in astrocytes controlled by nanostructure, thereby changing the nervous system microenvironment. Regulation of nervous system microenvironment is intimately related with growth and transduction of nerve cells. Controlling the variation of growth microenvironment effectively and accurately may be a big challenge in engineering. Examining the response of glia cells by nanoenvironmental stimulus and the interactions between glial-glial cells, rat glioma C6 cells were cultured on 10-200 nm nanodot arrays. These results indicated effective control of astroglial cell viability, morphology, cytoskeleton, adhesion molecule, and cell network, especially on 50 nm nanodot array resulting in 198 %、200 %、85 %、140 %、180 % improvement respectively. By western blot and immunostanning assays, gap junction of Cx43 expression significantly increased on 10 and 50 nm nanodot arrays, and accelerated the process of protein distribution; on day 3, the distribution of Cx43 protein still around nuclei of glioma on 100 and 200 nm nanodot arrays, indicating effective control signal transduction protein between astroglial cells. Consequently, the structure of nanodot arrays may not only affect physiological function in astrocytes but also influence the interactions and transduction between glia-to-glia cells. In the future, by changing the physiological behavior of nerve cells for optimal growth environment, may regulate interactions between neural cells in nervous system, and improve the challenges of neural implant. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070051604 http://hdl.handle.net/11536/71763 |
Appears in Collections: | Thesis |