完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCho, Hsun-Jungen_US
dc.contributor.authorJou, Yow-Jenen_US
dc.contributor.authorLan, Chien-Lunen_US
dc.date.accessioned2014-12-08T15:09:25Z-
dc.date.available2014-12-08T15:09:25Z-
dc.date.issued2009-06-01en_US
dc.identifier.issn1566-113Xen_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11067-008-9082-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/7195-
dc.description.abstractExisting research works on time-dependent origin-destination (O-D) estimation focus on the surveillance data usually assume the prior information of the O-D matrix (or transition matrix) is known (or at least partially known). In this paper, we relax such assumption by combining Gibbs sampler and Kalman filter in a state space model. A solution algorithm with parallel chain convergence control is proposed and implemented. To enhance its efficiency, a parallel structure is suggested with efficiency and speedup demonstrated using PC-cluster. Two numerical examples (one for Taipei Mass Rapid Transit network and the other for Taiwan Area National Freeway network) are included to show the proposed model could be effective of time-dependent origin-destination estimation.en_US
dc.language.isoen_USen_US
dc.subjectTime-dependent origin-destination estimationen_US
dc.subjectState space modelen_US
dc.subjectGibbs sampleren_US
dc.subjectKalman Filteren_US
dc.subjectParallel computingen_US
dc.titleTime Dependent Origin-destination Estimation from Traffic Count without Prior Informationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11067-008-9082-7en_US
dc.identifier.journalNETWORKS & SPATIAL ECONOMICSen_US
dc.citation.volume9en_US
dc.citation.issue2en_US
dc.citation.spage145en_US
dc.citation.epage170en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000266142300001-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000266142300001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。