Full metadata record
DC FieldValueLanguage
dc.contributor.author張育妮en_US
dc.contributor.authorChang, Yu-Nien_US
dc.contributor.author林盈達en_US
dc.contributor.authorLin, Ying-Daren_US
dc.date.accessioned2014-12-12T02:33:53Z-
dc.date.available2014-12-12T02:33:53Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070056051en_US
dc.identifier.urihttp://hdl.handle.net/11536/72006-
dc.description.abstractAndroid 是目前行動裝置上最受歡迎的作業系統之一。其普及性也使得它常常成為攻擊者攻擊的目標。為了偵測和分類惡意程式,我們提出一個高偵測效能和高準確率之三階段行為分析法,前兩階段用於偵測惡意程式,最後階段用於分類惡意程式。較快的第一階段中,我們利用應用程式要求的權限與貝氏定理快速濾掉應用程式,以減少到較慢的第二階段分析的樣本數量。第二階段中,我們利用最長共同子字串和N元產生的系統呼叫序列偵測惡意程式。最後,我們利用行為或權限向量的餘弦相似度將惡意程式分類成已知類型或未知類型。本文顯示在偵測率方面,兩階段比一階段更準確,若第二階採用最長共同子字串產生系統呼叫序列,其偵測率與誤判率分別為97%和3%;若採用權限向量分類,我們能正確辨識98%已知類型的惡意程式或新類型的惡意程式。zh_TW
dc.description.abstractAndroid is one of the most popular operating systems adopted in mobile devices. The popularity also turns it an attractive target for attackers. To detect and classify malicious Android applications, we propose an efficient and accurate behavior-based solution with three phases. The first two phases detects malicious applications and the last phase classifies the detected malware. The “faster” first phase quickly filters out applications with their requested permissions judged by the Bayes model and therefore reduces the number of samples passed to the “slower” second phase which detects malicious applications with their system call sequences matched by the longest common substring (LCS) or N-gram algorithm. Finally, we classify a malware into known or unknown type based on cosine similarity of behavior or permission vectors. Our experiments show that the two-phase detection approach works more accurately than a single phase approach. It has a TP rate and a FP rate of 97% and 3%, respectively, with LCS in the second phase. More than 98% of samples can be classified correctly into known or new types based on permission vectors.en_US
dc.language.isoen_USen_US
dc.subjectAndroidzh_TW
dc.subject惡意程式zh_TW
dc.subject行為分析zh_TW
dc.subject權限zh_TW
dc.subject系統呼叫zh_TW
dc.subject貝氏定理zh_TW
dc.subject最長共同子字串zh_TW
dc.subjectN元zh_TW
dc.subject餘弦相似度zh_TW
dc.subjectAndroiden_US
dc.subjectmalwareen_US
dc.subjectbehavior analysisen_US
dc.subjectpermissionsen_US
dc.subjectsystem callen_US
dc.subjectBayesen_US
dc.subjectlongest common subsequenceen_US
dc.subjectN-gramen_US
dc.subjectcosine similarityen_US
dc.title以共同行為為基礎之三階式Android惡意程式偵測與分類zh_TW
dc.titleThree-phase Detection and Classification for Android Malware Based on Common Behaviorsen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 605101.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.