完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHo, Tung-Yangen_US
dc.contributor.authorShih, Yuan-Kangen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:09:26Z-
dc.date.available2014-12-08T15:09:26Z-
dc.date.issued2009-05-31en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ipl.2009.02.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/7210-
dc.description.abstractA path in G is a hamiltonian path if it contains all vertices of G. A graph G is hamiltonian connected if there exists a hamiltonian path between any two distinct vertices of G. The degree of a vertex u in G is the number of vertices of G adjacent to u. We denote by B(G) the minimum degree of vertices of G. A graph G is conditional k edge-fault tolerant hamiltonian connected if G - F is hamiltonian connected for every F C E(G) with |F| <= k and S(G - F) >= 3. The conditional edge-fault tolerant hamiltonian connectivity HC(e)(3)(G) is defined as the maximum integer k such that G is k edge-fault tolerant conditional hamiltonian connected if G is hamiltonian connected and is undefined otherwise. Let n >= 4. We use K(n) to denote the complete graph with n vertices. In this paper, we show that HC(e)(3)(K(n)) = 2n - 10 for n is not an element of {4, 5, 8, 10}, HC(e)(3) (K(4)) = 0, HC(e)(3) (K(5)) = 2, HC(e)(3)(K(8)) = 5, and HC(e)(3)(K(10)) = 9. (c) 2009 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectComplete graphen_US
dc.subjectHamiltonianen_US
dc.subjectHamiltonian connecteden_US
dc.subjectFault toleranceen_US
dc.titleConditional fault hamiltonian connectivity of the complete graphen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ipl.2009.02.008en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume109en_US
dc.citation.issue12en_US
dc.citation.spage585en_US
dc.citation.epage588en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000265425200001-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000265425200001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。