標題: Conditional fault hamiltonian connectivity of the complete graph
作者: Ho, Tung-Yang
Shih, Yuan-Kang
Tan, Jimmy J. M.
Hsu, Lih-Hsing
資訊工程學系
Department of Computer Science
關鍵字: Complete graph;Hamiltonian;Hamiltonian connected;Fault tolerance
公開日期: 31-五月-2009
摘要: A path in G is a hamiltonian path if it contains all vertices of G. A graph G is hamiltonian connected if there exists a hamiltonian path between any two distinct vertices of G. The degree of a vertex u in G is the number of vertices of G adjacent to u. We denote by B(G) the minimum degree of vertices of G. A graph G is conditional k edge-fault tolerant hamiltonian connected if G - F is hamiltonian connected for every F C E(G) with |F| <= k and S(G - F) >= 3. The conditional edge-fault tolerant hamiltonian connectivity HC(e)(3)(G) is defined as the maximum integer k such that G is k edge-fault tolerant conditional hamiltonian connected if G is hamiltonian connected and is undefined otherwise. Let n >= 4. We use K(n) to denote the complete graph with n vertices. In this paper, we show that HC(e)(3)(K(n)) = 2n - 10 for n is not an element of {4, 5, 8, 10}, HC(e)(3) (K(4)) = 0, HC(e)(3) (K(5)) = 2, HC(e)(3)(K(8)) = 5, and HC(e)(3)(K(10)) = 9. (c) 2009 Elsevier B.V. All rights reserved.
URI: http://dx.doi.org/10.1016/j.ipl.2009.02.008
http://hdl.handle.net/11536/7210
ISSN: 0020-0190
DOI: 10.1016/j.ipl.2009.02.008
期刊: INFORMATION PROCESSING LETTERS
Volume: 109
Issue: 12
起始頁: 585
結束頁: 588
顯示於類別:期刊論文


文件中的檔案:

  1. 000265425200001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。