完整後設資料紀錄
DC 欄位語言
dc.contributor.author張穎銘en_US
dc.contributor.authorChang, Yin-Mingen_US
dc.contributor.author王蒞君en_US
dc.contributor.author王國禎en_US
dc.contributor.authorWang, Li-Chunen_US
dc.contributor.authorWang, Kuo-Chenen_US
dc.date.accessioned2014-12-12T02:35:14Z-
dc.date.available2014-12-12T02:35:14Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070056097en_US
dc.identifier.urihttp://hdl.handle.net/11536/72550-
dc.description.abstract由於電腦計算能力的提升,資料探勘可以從大量的資料中萃取出有用的資訊。2012年,每天會有2.5x1018位元組的資料產生。因此,當在多個參與者執行分散式的資料探勘演算法時,資料安全便成了重要的議題。在這篇論文中,我們聚焦在分散式資料探勘的安全技術提出了兩個協定---multi-party association rule mining (MP-ARM)以及multi-party decision tree learning (MP-DTL)。這兩個協定除了使用部分同形加密技術來達成安全資料探勘演算法,而且比目前存在的方法更有效率。藉由加入第三個參與者,可在多人的分散式資料探勘演算法中,完成大規模的資料探勘演算法。zh_TW
dc.description.abstractWith the advance of computing power, data mining techniques can extract useful information from large amount of data. In 2012, 2.5 quintillion bytes of data (1 follow 18 zeroes) are created every day. Data privacy is of utmost concern for distributed data mining across multiple parties, which may be competitors. In this thesis, we focus on the privacy preserving techniques in distributed data mining algorithms. We propose two protocols|multi-party association rule mining (MP-ARM) and multi-party decision tree learning (MP-DTL). Both protocols use partial homomorphic encryption to perform secure data mining algorithms, which are more e?cient than the existing work. With the aid from the third participant, two or more parties can securely perform large-scale data mining algorithms without revealing any additional information to the cloud servers.en_US
dc.language.isoen_USen_US
dc.subject密文資料探勘zh_TW
dc.subject同形加密zh_TW
dc.subjectprivacy-preserving data miningen_US
dc.subjectpartial homomorphic encryptionen_US
dc.title應用部份保密技術於密文資料探勘之協定設計zh_TW
dc.titleProtocol design for privacy-preserving data mining using partial homomorphic encryptionen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 609701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。