Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 葉旂豪 | en_US |
dc.contributor.author | Yeh, Chi-Hao | en_US |
dc.contributor.author | 劉敦仁 | en_US |
dc.contributor.author | Liu, Duen-Ren | en_US |
dc.date.accessioned | 2014-12-12T02:35:53Z | - |
dc.date.available | 2014-12-12T02:35:53Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT070053405 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/72744 | - |
dc.description.abstract | 當科技發展日漸進步,人們不再只是被動地接收資訊,更能透過許多不同的管道,在社群網站中分享自己的想法與喜好。然而伴隨著爆炸性的資料量,人們逐漸無法輕易從中找到自己所想要的資訊。面對資訊過載的問題,許多研究紛紛透過以使用者的喜好資訊、商品的內容等等為基礎的推薦系統,來改善推薦系統的效果。然而使用者的喜好更可能會受到興趣影響力和關注影響力的影響而產生改變,並且對於不同的影響力,使用者可能會受到不同程度的影響,應該透過個人化權重加以調整。此外,相關研究在討論關注影響力時,忽略心得影響以及時間因素的重要性,而本研究則將這些因素加入到推薦方法中。 本研究提出一個以興趣及關注影響力為基礎的個人化推薦方法來推薦商品給Urcosme的使用者。由於興趣影響力跟關注影響力對每個使用者有不同的影響程度,我們透過分析使用者在Urcosme中的購買和欲望清單的商品紀錄,來計算出對於不同影響力,每個使用者的權重為何,並在關注影響力中加入時間因素,最後由合併權重跟影響力所得到的預測分數,去做商品的推薦。根據本研究的實驗結果,我們發現在社群網站中,以關注影響力為基礎的個人化商品推薦可以有效改善推薦系統的效果。 | zh_TW |
dc.description.abstract | With its flourishing development of Web 2.0, people not only passively receive the information, but actively share the information with others by web 2.0 technology. Yet, for people, there is the information overload problem to filter the explosive information and find what people want hard. To solve the problem, the recommendation systems such as based on users’ preferences or the contents of items are the widely utilized solution. However, the interest influence, follow influence and personalized weights of influences may be the important factor for recommendation. Besides, the related researches do not consider the review influence and the time factor in recommendation. In our work, we proposed the novel recommendation method base on two types of influences including the interest influence and follow influence, and personalized weights for each influence for recommending products in cosmetic-sharing website, Urcosme. The experimental results show our proposed methods improve the performance of recommendation. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 社群網站 | zh_TW |
dc.subject | 推薦系統 | zh_TW |
dc.subject | 影響力分析 | zh_TW |
dc.subject | 關注影響力 | zh_TW |
dc.subject | 影響力推薦系統 | zh_TW |
dc.subject | Social Network | en_US |
dc.subject | Recommendation System | en_US |
dc.subject | Influence Analysis | en_US |
dc.subject | Follow Influence | en_US |
dc.subject | Influence Recommendation System | en_US |
dc.title | 以關注影響分析為基礎的商品推薦 | zh_TW |
dc.title | Product Recommendation Based on Follow Influence Analysis | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊管理研究所 | zh_TW |
Appears in Collections: | Thesis |