标题: 利用智慧型手机上之影像功能及惯性元件来设计行人定位系统之研究
A Study of Vision and IMU-Based Pedestrian Positioning System on the Smart Phone
作者: 萧兆杰
Hsiao, Chao-Chieh
林升甫
Lin, Sheng-Fuu
电控工程研究所
关键字: 连续影像序列重建;卡尔曼滤波器;加速稳健特征;分类树;SFM(structure from motion);Kalman filter;SURF feature;KD tree
公开日期: 2012
摘要: 在现今的导航当中,GPS和Wi-Fi是很频繁的应用,但是该设备有其限制,在一些收不到卫星讯号的地方无法使用,如:山洞等。而Wi-Fi定位则需要先建立一些定位点,而并非每个地方都有设置。本论文旨在解决这些定位方法所面对的问题,如何单纯的利用手机上所具备的影像功能和惯性元件来进行行人定位。
本论文所研究的场景是在学校的湖畔,该场景是一个较大范围的区域,且非平坦的区域;相较于使用在室内定位的方法,本系统可以有效抑制因为范围过大所造成的误差累积,且可以抵抗部分山坡地形所造成的误差。
本论文的贡献有三点:第一,本论文提出基于三维重建路径模型下的分类树建立可以有效缩短定位的时间;第二,因为在影像定位时,容易因为多相异视角造成匹配误差;又因为惯性元件也有误差累积现象,但惯性元件可以减少影像定位的次数。因此本论文提出了一个基于影像和惯性元件之间互相补偿的演算法来达到行人定位更精准更快速的目标;第三,本论文完成一个能实现这个目标的系统雏形,并在校园内验证成功。
GPS(global position system)and Wi-Fi have been applied in navigation in recent days frequently. However, they are limited in some environment where signal is not available, such as cave. For Wi-Fi , it need some AP to help localization which can not be equipped everywhere. This paper used IMU(inertial measurement unit) and vision function on the smart phone to solve the pedestrian navigation problem.
This system did the experiment around the lake at school which is a wide but not flat area. Contrast to other indoor navigation system, this one can decrease the error caused by the long path and sloping fields distance calculation.
There are three contributions of this thesis, first, through the KD tree method on the 3D reconstruction model, it can decrease the delay of positioning; Second, various viewpoints of vision positioning can cause match error while IMU may have accumulated error after long distance. In the thesis, it propose a method to compensate vision and IMU by each other. Third, the thesis finished a prototype system to achieve these goals and succeeded in positioning on campus
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT070160009
http://hdl.handle.net/11536/72982
显示于类别:Thesis