Full metadata record
DC FieldValueLanguage
dc.contributor.author黃瀚賢en_US
dc.contributor.authorHuang, Han-Hsienen_US
dc.contributor.author王才沛en_US
dc.contributor.authorWang, Tsai-peien_US
dc.date.accessioned2014-12-12T02:36:39Z-
dc.date.available2014-12-12T02:36:39Z-
dc.date.issued2013en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070056609en_US
dc.identifier.urihttp://hdl.handle.net/11536/72995-
dc.description.abstract這篇論文的內容是在研究TORCS平台上,以學習演算法訓練出來的賽車AI,在不同阻擋者以及不同軌道條件下的表現。論文一開始會先從為何我們想要研究更具侵略性的AI駕駛行為開始講起,接著介紹TORCS這個開放程式碼的賽車遊戲平台架構以及在各個研討會或期刊上與TORCS相關的研究。因為TORCS所內建的賽車AI其駕駛行為皆不具侵略性,在超車時如果剩餘的軌道寬度沒有達到一定的安全寬度,則會取消超車行為,且內建AI並不存在阻擋行為,若後車速度較快,前車會將路徑讓給後車。所以我們利用學習演算法中的Q-learning algorithm來發展更具侵略性的超車與阻擋行為,並統計在不同情形下賽車的數據來評比表現。zh_TW
dc.description.abstractIn this thesis, we research the learning of overtaking and blocking behaviors of AI (non-human) drivers on TORCS, a simulated car racing platform. At first, we introduce why we focus on the more aggressive driving strategy. Secondly, we introduce the TORCS racing game architecture and some researches in TORCS or AI-related conference. Because of built-in AI didn’t have aggressive driving skill, when performing overtaking, if remain track width has not reach to a safely width, the built-in AI will cancel the overtaking behavior. Additionally, the built-in AI didn’t have blocking behaviors. If the opponent’s speed was higher than theirs, it will let the opponent pass. In order to improve built-in AI’s driving strategy, we use Q-learning algorithm for learning behaviors and analysis their overtaking and blocking performance in different conditions.en_US
dc.language.isozh_TWen_US
dc.subjectTORCSzh_TW
dc.subject超車zh_TW
dc.subject阻擋zh_TW
dc.subject學習演算法zh_TW
dc.subjectTORCSen_US
dc.subjectOvertakeen_US
dc.subjectBlocken_US
dc.subjectLearning algorithmen_US
dc.title於模擬賽車遊戲學習超車與阻擋行為之研究zh_TW
dc.titleThe Study of Learning Overtaking and Blocking Behaviors in a Simulated Car Racing Gamesen_US
dc.typeThesisen_US
dc.contributor.department多媒體工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 660901.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.