标题: | 从众源停走资料撷取时序资讯之演算法 Discover Phase Timing Information Algorithms of Traffic Light System from Crowd Sourced Stop and Go Data |
作者: | 经嘉豪 Ching, Chia-Hao 易志伟 Yi, Chih-Wei 网路工程研究所 |
关键字: | 智慧型手机探侦车、行动感测、众源资料、震动;Smartphone-based probe car, mobile sensing, crowdsourcing, traffic shockwave |
公开日期: | 2013 |
摘要: | 从众源资源资料中撷取出需要的资讯已成为目前的新趋势,与传统方法相比, 此方法不需要建设大量的硬体设备。而在众源资料中,如何撷取出需求的资讯与 渗透率的问题一直是被强力地关注与讨论。在本篇论文中,我们首先介绍关于震 动波此一现象,并且详细地介绍当此一现象在都市中由红绿灯和车辆所引起时的 特殊情形,最后在说明此震动波中所隐含的红绿灯号志资讯与车流资讯。而本论 文的重点就是透过众源资料侦测出震动波,并且计算出震动波所隐含的号志资 讯。为了要降低计算出震动波的渗透率,我们使用了折叠技术以大幅将低渗透率 的需求。在本篇论文中,我们模拟了多次车辆在移动情形,并且分析其结果。结 果显示透过众源资讯所找出的震动波其隐含的号志资讯有着极高的准确度,而且 摺叠技术也能够有效地降低渗透率的需求。 Crowdsourcing is a new trend for pervasively discovering traffic information due to its low deployment and maintenance cost as compared with traditional infrastructurebased approaches, e.g., loop detectors and CCTV. Mining techniques and the penetration rate of participators in the discovery process are two major issues in such approaches. In this work, we first point out the shockwave phenomenon occurring in signalized traffic can be used to discover useful traffic information including traffic light information and vehicle flow information. To reduce the requirement on the penetration rate, a folding heuristic is proposed. The proposed concepts are verified via extensive simulations, especially on the penetration rate issue. Our results show that shockwave models are useful to extract traffic information from crowd sourced data, and the folding technique can effectively reduce the requirement on the penetration rate. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070056517 http://hdl.handle.net/11536/73038 |
显示于类别: | Thesis |