Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 施建宏 | en_US |
dc.contributor.author | Shih, Chien-Hung | en_US |
dc.contributor.author | 楊一帆 | en_US |
dc.contributor.author | Yang, Yi-Fan | en_US |
dc.date.accessioned | 2014-12-12T02:37:09Z | - |
dc.date.available | 2014-12-12T02:37:09Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079822511 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/73166 | - |
dc.description.abstract | 在這篇論文中,我們會討論在給定不同D值下的志村曲線的方程式,這裡$W_D$代表所有在$X^D_0(1)$上的Atkin-Lehner involutions所形成的群。論文中最主要的想法是建構兩個合適且weight為0的Borcherds form以產生在$X^D_0(1)$模函數組成的體,藉由Schofer的方程式來計算不同Borcherds form在CM點上的值最後找出兩個Borcherds form的關聯性。 | zh_TW |
dc.description.abstract | In the thesis, we will determine the equations of Shimura curves$X^D_0(1)/W_D$ of genus one for several D, where $W_D$ denotes the group of all Atkin-Lehner involutions on $X^D_0(1)$. The main idea is to construct two suitable Borcherds forms of weight 0 that generate the field of modular functions on $X^D_0(1)/W_D$ and use Schofer’s formula for values of Borcherds forms at CM-points to find the relation between the two Borcherds forms. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 志村曲線 | zh_TW |
dc.subject | Shimura Curves | en_US |
dc.title | 志村曲線之定義方程式 | zh_TW |
dc.title | Equations of Shimura Curves | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.