Full metadata record
DC FieldValueLanguage
dc.contributor.author施建宏en_US
dc.contributor.authorShih, Chien-Hungen_US
dc.contributor.author楊一帆en_US
dc.contributor.authorYang, Yi-Fanen_US
dc.date.accessioned2014-12-12T02:37:09Z-
dc.date.available2014-12-12T02:37:09Z-
dc.date.issued2012en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079822511en_US
dc.identifier.urihttp://hdl.handle.net/11536/73166-
dc.description.abstract在這篇論文中,我們會討論在給定不同D值下的志村曲線的方程式,這裡$W_D$代表所有在$X^D_0(1)$上的Atkin-Lehner involutions所形成的群。論文中最主要的想法是建構兩個合適且weight為0的Borcherds form以產生在$X^D_0(1)$模函數組成的體,藉由Schofer的方程式來計算不同Borcherds form在CM點上的值最後找出兩個Borcherds form的關聯性。zh_TW
dc.description.abstractIn the thesis, we will determine the equations of Shimura curves$X^D_0(1)/W_D$ of genus one for several D, where $W_D$ denotes the group of all Atkin-Lehner involutions on $X^D_0(1)$. The main idea is to construct two suitable Borcherds forms of weight 0 that generate the field of modular functions on $X^D_0(1)/W_D$ and use Schofer’s formula for values of Borcherds forms at CM-points to find the relation between the two Borcherds forms.en_US
dc.language.isoen_USen_US
dc.subject志村曲線zh_TW
dc.subjectShimura Curvesen_US
dc.title志村曲線之定義方程式zh_TW
dc.titleEquations of Shimura Curvesen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 251101.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.