完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, PRen_US
dc.contributor.authorYang, WHen_US
dc.date.accessioned2014-12-08T15:02:01Z-
dc.date.available2014-12-08T15:02:01Z-
dc.date.issued1997-02-01en_US
dc.identifier.issn0018-9545en_US
dc.identifier.urihttp://dx.doi.org/10.1109/25.554747en_US
dc.identifier.urihttp://hdl.handle.net/11536/733-
dc.description.abstractThis paper investigates the application of a radial basis function (RBF) neural network to the prediction of Field strength based on topographical and morphographical data, The RBF neural network Is a two-layer localized receptive field network whose output nodes from a combination of radial activation functions computed by the hidden layer nodes. Appropriate centers and connection weights in the RBF network lead to a network that is capable of forming the best approximation to any continuous nonlinear mapping up to an arbitrary resolution. Such an approximation introduces best nonlinear approximation capability into the prediction model in order to accurately predict propagation loss over an arbitrary environment based on adaptive learning from measurement data, The adaptive learning employs hybrid competitive and recursive least squares algorithms, The unsupervised competitive algorithm adjusts the centers while the recursive least squares (RLS) algorithm estimates the connection weights. Because these two learning rules are both linear, rapid convergence is guaranteed. This hybrid algorithm significantly enhances the real-time or adaptive capability of the RBF-based prediction model, The applications to Okumura's data are included to demonstrate the effectiveness of the RBF neural network approach.en_US
dc.language.isoen_USen_US
dc.subjectpropagation predictionen_US
dc.subjectRBF neural networksen_US
dc.titleEnvironment-adaptation mobile radio propagation prediction using radial basis function neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/25.554747en_US
dc.identifier.journalIEEE TRANSACTIONS ON VEHICULAR TECHNOLOGYen_US
dc.citation.volume46en_US
dc.citation.issue1en_US
dc.citation.spage155en_US
dc.citation.epage160en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:A1997WJ49200016-
dc.citation.woscount13-
顯示於類別:期刊論文


文件中的檔案:

  1. A1997WJ49200016.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。