標題: 運用案例推論法於IT事件管理之知識支援
Knowledge Support for IT Incident Management based on Case-Based Reasoning
作者: 董克勤
Tung, Ke-Chin
劉敦仁
Liu, Duen-Ren
管理學院資訊管理學程
關鍵字: 案例推論式;文件探勘;K-近鄰演算法;ITIL;Case-Based Reasoning;Text mining;K-th Nearest Neighbor
公開日期: 2013
摘要: 近年來由於資訊科技在企業內發展日趨複雜,因此各式的問題也層出不窮,如何運用有限的時間和人力成本來解決是一大挑戰。另外在面對專業人員的流動率頻繁,企業知識不易於留存於公司,如何確實將正確將員工的問題描述作完整的歸類,以便能找出最合適或相近的處理案例來解決問題,是企業重要的研究議題。本研究提出運用案例推論法於IT事件管理之知識支援架構,運用資料案例式推理技術從事件記錄中發掘出相關案例的事件管理知識,透過規則推論的方式提供相關案例的事件知識支援,有效掌握事件相關資訊。
The more complex the internal IT applications used by Enterprises, the more computer operation problems that result! For Enterprises, human resources and time for trouble shooting are very limited; this situation presents a significant challenge. It is an important issue for enterprises to correctly categorize problems and determine the most suitable cases for trouble shooting when they are facing the problems of high replacement rate of IT members and scattered know how. This study developed a system of Knowledge Support for IT Incident Management based on Case-Based Reasoning. This work integrates CBR with an event log to mine Knowledge for Case Incident Management, and we use rules of inference Support Knowledge for Case Incidents.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079964526
http://hdl.handle.net/11536/73499
Appears in Collections:Thesis