标题: 无机暨有机半导体电晶体及感测器之开发研究
Study on the inorganic & organic semiconductor transistor and sensor devices
作者: 李长纮
Li, Chang-Hung
冉晓雯
Zan, Hsiao-Wen
光电工程研究所
关键字: 垂直电晶体;气体感测器;金属氧化物半导体;空间电荷限制电晶体;薄膜电晶体;vertical transistor;gas sensor;metal oxide semiconductor;space-charge-limited transistor;thin-film transistor
公开日期: 2013
摘要: 本论文主要研究垂直式有机半导体电晶体的几何结构与电性关系,且利用垂直式有机半导体电晶体探讨并呈现整合气体感测之可能性。同时,研究高性能水平式无机非晶铟镓氧化锌半导体薄膜电晶体,并结合无机/有机半导体材料特性,开发出无机暨有机复合式电晶体气体感测器。本论文架构出主要四个研究部分:第一、垂直有机电晶体的几何结构与电性之相依性研究(Chapter 3);此部分与法国Prof. Olivier Soppera等人合作开发具有高度规则孔洞排列之垂直式有机半导体电晶体,尝试改变其孔洞宽度、高度、深宽比等几何结构与垂直式电晶体输出电特性之相依性,加以TCAD 软体模拟辅佐解释机制,最后归纳出一最佳几何结构制作垂直有机电晶体并成功驱动白光有机发光二极体。第二、开发垂直高分子有机半导体电晶体感测器(Chapter 4);此部分我们整合垂直式有机半导体电晶体于气体感测能力,开发出低操作电压高灵敏度垂直有机电晶体气体感测器,其操作偏压 < 1 V的感测极限可低至30ppb的氨气浓度,并利用TCAD软体模拟探讨其可能的机制。第三、利用奈米点掺杂开发高性能双闸极铟镓氧化锌薄膜电晶体(Chapter 5);在此部分我们延续先前奈米点掺杂研究并结合双闸极结构,制作出高输出电流之铟镓氧化锌电晶体,同时利用TCAD软体模拟探讨解释其可能机制。第四、开发无机/有机复合式电晶体气体感测器(Chapter 6);此部分我们结合有几材料对气体感测的敏感度,无机材料的电性稳定度两种不同材料的优势,第一个在铟镓氧化锌电晶体上制作出无机/有机复合式电晶体气体感测器,并成功呈现出其侦测浓度可以低至100ppb的丙酮气体及氨气。
This dissertation aims to develop the high performance vertical polymer space-charge-limited transistor (SCLT), high performance dual-gate operated mode (DG mode) amorphous indium gallium zinc oxide semiconductor thin-film transistor (a-IGZO TFT) and the sensitive gas sensor based on the above two transistor-types. Four projects are reported here. In Chapter 3, the geometric design of the SCLT was investigated by adjusting the opening hole diameter, the height of insulator and the aspect ratio. Helping by the simulation, a SCLT with optimize geometric design was fabricated and successful drove white light-emitting-diode (W-OLED). This work collaborated with the French group of prof. Olivier Soppera. Second, in Chapter 4, we integrated the vertical polymer SCLT with gas sensing property. With lower than 1 V operated voltage, the SCLT presented a good sensing response in ammonia gas and the limited sensing concentration down to the 30 ppb, and via the TCAD simulation to discuss the sensing mechanism. Third, extending our previous study in NDD a-IGZO TFT in Chapter 5, we fabricated the double gate NDD a-IGZO TFT and presented high output current under the DG mode. The TCAD simulations provided that the dot-like doping increased the carrier concentration in middle channel of the dual-gate NDD a-IGZO TFT. At final, in Chapter 6, we combined the superiority of organic and inorganic materials to firstly fabricate an organic/inorganic hybrid gas sensor based on thin-film transistor (TFT). By capping an organic sensing layer onto amorphous indium gallium zinc oxide (a-IGZO) TFT, the hybrid gas sensor exhibited the sensing limitation of 100 ppb in ammonia and acetone gas.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079824803
http://hdl.handle.net/11536/73547
显示于类别:Thesis