Title: | 無機暨有機半導體電晶體及感測器之開發研究 Study on the inorganic & organic semiconductor transistor and sensor devices |
Authors: | 李長紘 Li, Chang-Hung 冉曉雯 Zan, Hsiao-Wen 光電工程研究所 |
Keywords: | 垂直電晶體;氣體感測器;金屬氧化物半導體;空間電荷限制電晶體;薄膜電晶體;vertical transistor;gas sensor;metal oxide semiconductor;space-charge-limited transistor;thin-film transistor |
Issue Date: | 2013 |
Abstract: | 本論文主要研究垂直式有機半導體電晶體的幾何結構與電性關係,且利用垂直式有機半導體電晶體探討並呈現整合氣體感測之可能性。同時,研究高性能水平式無機非晶銦鎵氧化鋅半導體薄膜電晶體,並結合無機/有機半導體材料特性,開發出無機暨有機複合式電晶體氣體感測器。本論文架構出主要四個研究部分:第一、垂直有機電晶體的幾何結構與電性之相依性研究(Chapter 3);此部分與法國Prof. Olivier Soppera等人合作開發具有高度規則孔洞排列之垂直式有機半導體電晶體,嘗試改變其孔洞寬度、高度、深寬比等幾何結構與垂直式電晶體輸出電特性之相依性,加以TCAD 軟體模擬輔佐解釋機制,最後歸納出一最佳幾何結構製作垂直有機電晶體並成功驅動白光有機發光二極體。第二、開發垂直高分子有機半導體電晶體感測器(Chapter 4);此部分我們整合垂直式有機半導體電晶體於氣體感測能力,開發出低操作電壓高靈敏度垂直有機電晶體氣體感測器,其操作偏壓 < 1 V的感測極限可低至30ppb的氨氣濃度,並利用TCAD軟體模擬探討其可能的機制。第三、利用奈米點摻雜開發高性能雙閘極銦鎵氧化鋅薄膜電晶體(Chapter 5);在此部分我們延續先前奈米點摻雜研究並結合雙閘極結構,製作出高輸出電流之銦鎵氧化鋅電晶體,同時利用TCAD軟體模擬探討解釋其可能機制。第四、開發無機/有機複合式電晶體氣體感測器(Chapter 6);此部分我們結合有幾材料對氣體感測的敏感度,無機材料的電性穩定度兩種不同材料的優勢,第一個在銦鎵氧化鋅電晶體上製作出無機/有機複合式電晶體氣體感測器,並成功呈現出其偵測濃度可以低至100ppb的丙酮氣體及氨氣。 This dissertation aims to develop the high performance vertical polymer space-charge-limited transistor (SCLT), high performance dual-gate operated mode (DG mode) amorphous indium gallium zinc oxide semiconductor thin-film transistor (a-IGZO TFT) and the sensitive gas sensor based on the above two transistor-types. Four projects are reported here. In Chapter 3, the geometric design of the SCLT was investigated by adjusting the opening hole diameter, the height of insulator and the aspect ratio. Helping by the simulation, a SCLT with optimize geometric design was fabricated and successful drove white light-emitting-diode (W-OLED). This work collaborated with the French group of prof. Olivier Soppera. Second, in Chapter 4, we integrated the vertical polymer SCLT with gas sensing property. With lower than 1 V operated voltage, the SCLT presented a good sensing response in ammonia gas and the limited sensing concentration down to the 30 ppb, and via the TCAD simulation to discuss the sensing mechanism. Third, extending our previous study in NDD a-IGZO TFT in Chapter 5, we fabricated the double gate NDD a-IGZO TFT and presented high output current under the DG mode. The TCAD simulations provided that the dot-like doping increased the carrier concentration in middle channel of the dual-gate NDD a-IGZO TFT. At final, in Chapter 6, we combined the superiority of organic and inorganic materials to firstly fabricate an organic/inorganic hybrid gas sensor based on thin-film transistor (TFT). By capping an organic sensing layer onto amorphous indium gallium zinc oxide (a-IGZO) TFT, the hybrid gas sensor exhibited the sensing limitation of 100 ppb in ammonia and acetone gas. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079824803 http://hdl.handle.net/11536/73547 |
Appears in Collections: | Thesis |