標題: | 應用多重特徵於提升材質辨識的準確性 Improving the Accuracy of Texture Recognition by Multiple Features |
作者: | 劉彥錚 Liu, Yen-Chen 周志成 Jou, Chi-Cheng 電控工程研究所 |
關鍵字: | 物件辨識;材質紋理辨識;特徵;object recognition;texture recognition;feature |
公開日期: | 2013 |
摘要: | 現今電腦視覺應用越來越廣泛,其中材質辨識是一個重要的課題。實證分析發現材質的紋理會因為光線明亮、角度旋轉、尺度變化以及雜訊干擾降低辨識系統的準確度。本研究選取常見的四種紋理特徵做為辨識依據,分別為灰階共生矩陣、局部二值化模式、局部模式共生矩陣和紋理基元法。根據特徵特性探討,選擇單一特徵只能解決上述部分問題。舉例來說,灰階共生矩陣僅具有辨識角度旋轉問題的能力,當相同紋理因光亮的變化而有所不同時,將無法正確的辨識。因此本論文提出結合數個紋理特徵的方法進行材質辨識,稱之多重特徵法。實驗結果證明多重特徵法確實有效提升材質辨識的準確度。 Recently, the use of computer vision has become more popular. One of the important uses is texture recognition. There are four major problems about the texture recognition: light, scale, angle, and noise. This thesis proposed four texture features to solve the problems: Gray Level Co-occurrence Matrix, Local Binary Pattern, Local Pattern Co-occurrence Matrix and Textons-based Approach. However, using only one of the texture features, we couldn’t solve these problems at one time. For example, using Gray Level Co-occurrence Matrix as the texture feature only solved the problem of rotational change. And the problem of light illumination still remains. The thesis proposes a new method that combines multiple features. The new method could enhance accuracy of texture recognition. Thus the experiment proved that the method could enhance accuracy of texture recognition. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070060077 http://hdl.handle.net/11536/73614 |
顯示於類別: | 畢業論文 |