Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Yung-Mingen_US
dc.contributor.authorChen, Ching-Wenen_US
dc.date.accessioned2014-12-08T15:09:41Z-
dc.date.available2014-12-08T15:09:41Z-
dc.date.issued2009-04-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2008.07.077en_US
dc.identifier.urihttp://hdl.handle.net/11536/7413-
dc.description.abstractWeblog is a good paradigm of online social network which constitutes web-based regularly updated journals with reverse chronological sequences of dated entries, usually with blogrolls on the sidebars, allowing bloggers link to favorite site which they are frequently visited. In this study we propose a blog recommendation mechanism that combines trust model, social relation and semantic analysis and illustrates how it can be applied to a prestigious online blogging system - wretch in Taiwan. By the results of experimental study, we found a number of implications from the Weblog network and several important theories in domain of social networking were empirically justified. The experimental evaluation reveals that the proposed recommendation mechanism is quite feasible and promising. (C) 2008 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectBlogosphereen_US
dc.subjectTrust modelen_US
dc.subjectSocial networkingen_US
dc.subjectInformation retrievalen_US
dc.subjectBack-propagation neural networken_US
dc.titleA synthetical approach for blog recommendation: Combining trust, social relation, and semantic analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2008.07.077en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume36en_US
dc.citation.issue3en_US
dc.citation.spage6536en_US
dc.citation.epage6547en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000263817100096-
dc.citation.woscount13-
Appears in Collections:Articles


Files in This Item:

  1. 000263817100096.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.