Full metadata record
DC FieldValueLanguage
dc.contributor.author王丞偉en_US
dc.contributor.authorWang Chan-Weien_US
dc.contributor.author李榮耀en_US
dc.contributor.authorLee Jong-Eaoen_US
dc.date.accessioned2014-12-12T02:40:32Z-
dc.date.available2014-12-12T02:40:32Z-
dc.date.issued2013en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070152214en_US
dc.identifier.urihttp://hdl.handle.net/11536/74428-
dc.description.abstractSine-Gordon 方程是一個二階的偏微分方程。方程式經由轉換變成一單擺運動,並且我們得到在複數平面上是一個雙值函數,所以我們引進一個新的空間,即黎曼面,使得 在這個空間上為可解析的單值函數,並且我們研究在黎曼面上的積分以及數值解。 再來我們運用古典橢圓函數的理論來尋求單擺方程的特殊解及其他性質。zh_TW
dc.description.abstractSine-Gordon equation is a second order partial differential equation. We consider the traveling wave solution. Then it comes to the pendulum motion. But it is a two-valued function on . So we need a new space, which is known as the Riemann surface, such that it becomes analytic single-valued function on the Riemann surface. And then we study the classical elliptic function theory to solve some special solutions of it , and discuss their properties.en_US
dc.language.isoen_USen_US
dc.subject黎曼面zh_TW
dc.subject橢圓函數zh_TW
dc.subject單擺zh_TW
dc.subjectRiemann surfaceen_US
dc.subjectElliptic functionen_US
dc.subjectpendulum motionen_US
dc.titleSine-Gordon方程基本理論的探討zh_TW
dc.titleStudy of the Underlying Theory of Sine-Gordon Equationen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis