Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Chung-Haoen_US
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHuang, Hua-Minen_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:09:44Z-
dc.date.available2014-12-08T15:09:44Z-
dc.date.issued2009-04-01en_US
dc.identifier.issn0920-8542en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11227-008-0206-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/7443-
dc.description.abstractA k -container C(u,v) of a graph G is a set of k disjoint paths between u and v. A k-container C(u,v) of G is a k (*) -container if it contains all vertices of G. A graph G is k (*) -connected if there exists a k (*)-container between any two distinct vertices of G. Therefore, a graph is 1(*)-connected (respectively, 2(*)-connected) if and only if it is Hamiltonian connected (respectively, Hamiltonian). A graph G is super spanning connected if there exists a k (*)-container between any two distinct vertices of G for every k with 1a parts per thousand currency signka parts per thousand currency sign kappa(G) where kappa(G) is the connectivity of G. A bipartite graph G is k (*) -laceable if there exists a k (*)-container between any two vertices from different partite set of G. A bipartite graph G is super spanning laceable if there exists a k (*)-container between any two vertices from different partite set of G for every k with 1a parts per thousand currency signka parts per thousand currency sign kappa(G). In this paper, we prove that the enhanced hypercube Q (n,m) is super spanning laceable if m is an odd integer and super spanning connected if otherwise.en_US
dc.language.isoen_USen_US
dc.subjectFolded hypercubesen_US
dc.subjectEnhanced hypercubesen_US
dc.subjectHamiltonian connecteden_US
dc.subjectHamiltonian laceableen_US
dc.subjectSuper spanning connecteden_US
dc.subjectSuper spanning laceableen_US
dc.titleThe super spanning connectivity and super spanning laceability of the enhanced hypercubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11227-008-0206-0en_US
dc.identifier.journalJOURNAL OF SUPERCOMPUTINGen_US
dc.citation.volume48en_US
dc.citation.issue1en_US
dc.citation.spage66en_US
dc.citation.epage87en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000263686800004-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000263686800004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.