Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chang, Chung-Hao | en_US |
dc.contributor.author | Lin, Cheng-Kuan | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.contributor.author | Huang, Hua-Min | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.date.accessioned | 2014-12-08T15:09:44Z | - |
dc.date.available | 2014-12-08T15:09:44Z | - |
dc.date.issued | 2009-04-01 | en_US |
dc.identifier.issn | 0920-8542 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s11227-008-0206-0 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/7443 | - |
dc.description.abstract | A k -container C(u,v) of a graph G is a set of k disjoint paths between u and v. A k-container C(u,v) of G is a k (*) -container if it contains all vertices of G. A graph G is k (*) -connected if there exists a k (*)-container between any two distinct vertices of G. Therefore, a graph is 1(*)-connected (respectively, 2(*)-connected) if and only if it is Hamiltonian connected (respectively, Hamiltonian). A graph G is super spanning connected if there exists a k (*)-container between any two distinct vertices of G for every k with 1a parts per thousand currency signka parts per thousand currency sign kappa(G) where kappa(G) is the connectivity of G. A bipartite graph G is k (*) -laceable if there exists a k (*)-container between any two vertices from different partite set of G. A bipartite graph G is super spanning laceable if there exists a k (*)-container between any two vertices from different partite set of G for every k with 1a parts per thousand currency signka parts per thousand currency sign kappa(G). In this paper, we prove that the enhanced hypercube Q (n,m) is super spanning laceable if m is an odd integer and super spanning connected if otherwise. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Folded hypercubes | en_US |
dc.subject | Enhanced hypercubes | en_US |
dc.subject | Hamiltonian connected | en_US |
dc.subject | Hamiltonian laceable | en_US |
dc.subject | Super spanning connected | en_US |
dc.subject | Super spanning laceable | en_US |
dc.title | The super spanning connectivity and super spanning laceability of the enhanced hypercubes | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11227-008-0206-0 | en_US |
dc.identifier.journal | JOURNAL OF SUPERCOMPUTING | en_US |
dc.citation.volume | 48 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 66 | en_US |
dc.citation.epage | 87 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000263686800004 | - |
dc.citation.woscount | 3 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.