完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, QZen_US
dc.contributor.authorJou, ICen_US
dc.contributor.authorLee, SYen_US
dc.date.accessioned2014-12-08T15:02:02Z-
dc.date.available2014-12-08T15:02:02Z-
dc.date.issued1997-02-01en_US
dc.identifier.issn1083-4419en_US
dc.identifier.urihttp://dx.doi.org/10.1109/3477.552197en_US
dc.identifier.urihttp://hdl.handle.net/11536/744-
dc.description.abstractIn this paper, an on-line signature verification scheme based on Linear Prediction Coding (LPC) cepstrum and neural networks is proposed. Cepstral coefficients derived from linear predictor coefficients of the writing trajectories are calculated as the features of the signatures. These coefficients are used as inputs to the neural networks. A number of single-output multilayer perceptrons (MLP's), as many as the number of words in the signature, are equipped for each registered person to verify the input signature. If the summation of output values of all MLP's is larger than verification threshold, the input signature is regarded as a genuine signature; otherwise, the input signature is a forgery. Simulations show that this scheme can detect the genuineness of the input signatures from our test database with an error rate as low as 4%.en_US
dc.language.isoen_USen_US
dc.titleOn-line signature verification using LPC cepstrum and neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/3477.552197en_US
dc.identifier.journalIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICSen_US
dc.citation.volume27en_US
dc.citation.issue1en_US
dc.citation.spage148en_US
dc.citation.epage153en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1997WD89200017-
dc.citation.woscount21-
顯示於類別:期刊論文


文件中的檔案:

  1. A1997WD89200017.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。