標題: | 電漿輔助原子層沉積法製備不同尺寸之白金奈米粒以研究催化甲醇氧化反應 Plasma enhanced atomic layer deposition of Pt nanoparticles for studying the size effect on the electrocatalytic activity toward methanol oxidation reaction |
作者: | 劉仲軒 Liu, Chung-Hsuan 潘扶民 Pan, Fu-Ming 材料科學與工程學系所 |
關鍵字: | 電漿原子層沉積法;甲醇氧化反應;白金奈米粒;二氧化鈦;雙官能基機制;Pt;PEALD;TiO2;Methanol;electro-oxidation;DMFC;Size effect |
公開日期: | 2013 |
摘要: | 白金為燃料電池常用之觸媒,白金之高催化特性與化學穩定性,在直接甲醇燃料電池中扮演重要的角色,然而在催化甲醇的反應中,因催化反應不完全,容易產生一氧化碳,並且附著在白金表面,使白金反應面積下降,形成一氧化碳毒化現象,導致燃料電池效能不佳;在酸性溶液中,二氧化鈦基材化學特性穩定且抗腐蝕性強,此外二氧化鈦表面擁有豐富的氫氧基,許多文獻沉積白金於二氧化鈦基材上來提升觸媒之電催化特性;本研究利用電漿輔助原子層沉積法製備不同尺寸的白金奈米粒於自生成二氧化鈦基材上,以探討不同尺寸的白金奈米粒在電化學催化甲醇氧化反應中,與抗一氧化碳毒化的能力之間的關係。
白金奈米粒的尺寸與電漿輔助原子沉積法的反應圈數成正相關,本實驗製備白金奈米粒由沉積反應圈數第12圈到第50圈不等,根據穿透式電子顯微鏡的觀察,所製備的白金奈米粒尺寸介於3奈米到7.3奈米之間。由電化學的循環伏安量測中,當白金奈米粒越小時,甲醇氧化電流密度(If)與甲醇氧化不完全之殘留物的氧化電流密度(Ib)比例越大,顯示出白金奈米粒隨著尺寸縮小能提高白金觸媒抗一氧化碳毒化之能力。
許多文獻提出白金觸媒於過度金屬氧化物基材上能提升抗一氧化碳毒化能力,主要歸因於白金與過度金屬氧化物基材之間的電荷轉移作用與雙官能基機制的協同效應;然而,根據X光光電子能譜的分析結果,不同尺寸之白金奈米粒與自生成二氧化鈦基材之間並無明顯電荷轉移的現象,因此,在本研究中的白金觸媒能提升抗一氧化碳毒化能力主要是因為雙官能基機制的影響,在較小的白金奈米粒觸媒中,二氧化鈦上的氫氧基容易轉移到白金奈米粒表面上,進而氧化吸附在白金奈米粒表面上的一氧化碳,使得小尺寸的白金奈米粒觸媒擁有較佳的抗一氧化碳毒化能力,提升白金觸媒對於甲醇的電催化特性。 This study prepared Pt nanoparticles with different particle sizes on a native TiO2 surface layer of a Ti thin film by plasma enhanced atomic layer deposition (PEALD), and investigated the Pt particle size effect on the electrocatalytic activity towards methanol oxidation reaction (MOR) in acidic media. The Pt nanoparticles size increases with the number of the PEALD reaction cycle, and the Pt nanoparticles have an average size between 3 nm and 7.3 nm depending on the PEALD reaction cycle number, which varies from 12 to 50 cycles in this study. From cyclic voltammetry measurements, the Pt particle size is the smaller, the electrochemical surface area is the larger and the CO tolerance in MOR is the better. According to x-ray photoelectron spectroscopy analysis, charge transfer between the Pt nanoparticles and the TiO2 support is insignificant, indicating that the better electrochemical properties of smaller Pt nanoparticles can be understood mainly by bi-functional mechanism. CO adspecies on smaller Pt nanoparticles can be oxidized more easily by hydroxyl adspecies migrating from the hydrophilic TiO2 surface, leading to a higher electrocatalytic activity of the Pt/TiO2 electrode towards MOR in the acidic media. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070151526 http://hdl.handle.net/11536/74886 |
顯示於類別: | 畢業論文 |