完整後設資料紀錄
DC 欄位語言
dc.contributor.author莊惠琪en_US
dc.contributor.authorChuang, Hui-Chien_US
dc.contributor.author陳永平en_US
dc.contributor.authorChen, Yon-Pingen_US
dc.date.accessioned2014-12-12T02:41:55Z-
dc.date.available2014-12-12T02:41:55Z-
dc.date.issued2013en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070160065en_US
dc.identifier.urihttp://hdl.handle.net/11536/74923-
dc.description.abstract溝通是人機互動中非常重要的一環,本論文提出一個以色彩深度影像為基礎的指拼法辨識系統,分為手掌區域偵測、手勢特徵擷取及指拼法辨識三個部分。首先是手掌區域偵測部分,先使用膚色偵測與聯通物件法找出膚色區域的輪廓,再利用距離轉換法決定出膚色區域的特徵點,進而將手臉分離得出手掌區域。接著是手勢特徵擷取,包括手勢形狀及手勢紋理兩種特徵,先由手掌區域的特徵點找出手掌骨架,並決定出掌心及指尖位置、手掌方向及各手指向量,作為手勢形狀特徵,本論文針對無法經由手勢形狀特徵予以辨識的指拼法手勢,提出以局部二質化模式處理手掌區域之灰階影像,產生手勢紋理特徵後再加以辨識。最後,利用不同的類神經網路分類器進行指拼法辨識。從實驗結果可知,本系統對於美國手語中大部分的指拼法,可以達到八成以上的辨識率,為一有效的即時辨識系統。zh_TW
dc.description.abstractCommunication is a very important part for human-computer interaction. This thesis provides a fingerspelling recognition system with high accuracy rate based on RGB-D image. The system are separated into three parts, including ROI selection, hand feature extraction, and fingerspelling recognition. For the ROI selection, the regions of hand and face are first obtained by skin color detection and connect component labeling (CCL), and then the hand, the ROI, is determined by the feature point extraction based on distance transform. Followed is the hand feature extraction which consists of the hand structure and the hand texture. From the feature points of ROI, the locations of palm and fingertips, palm direction, and finger vectors are formed as the hand structure. In addition to the hand structure, this thesis adopts the LBP operator to generate the hand texture to deal with the fingerspelling not recognizable by the hand structure. Finally, the extracted hand features are sent into the fingerspelling recognition system, which is built with several different neural network classifiers. The experimental results show that this system is an effective real-time recognition system whose accuracy is higher than 80% for most of the fingerspelling in ASL.en_US
dc.language.isoen_USen_US
dc.subject手勢辨識zh_TW
dc.subject影像處理zh_TW
dc.subject局部二值模式zh_TW
dc.subject指拼法zh_TW
dc.subjecthand gesture recognitionen_US
dc.subjectimage processingen_US
dc.subjectlocal binary patternen_US
dc.subjectfingerspellingen_US
dc.title基於RGB-D影像資訊之即時指拼法辨識系統zh_TW
dc.titleReal-Time Fingerspelling Recognition System Design Based on RGB-D Image Informationen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 006501.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。