完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Cheng-Hungen_US
dc.contributor.authorTsai, Jengjanen_US
dc.contributor.authorLo, Hui-Fenen_US
dc.contributor.authorMal'shukov, A. G.en_US
dc.date.accessioned2019-04-03T06:42:32Z-
dc.date.available2019-04-03T06:42:32Z-
dc.date.issued2009-03-01en_US
dc.identifier.issn1098-0121en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevB.79.125310en_US
dc.identifier.urihttp://hdl.handle.net/11536/7521-
dc.description.abstractThe semiclassical path integral (SPI) method has been applied for studying spin relaxation in a narrow two-dimensional strip with the Rashba spin-orbit interaction. Our numerical calculations show good agreement with the experimental data, although some features of experimental results are not clear yet. We also calculated the relaxation of a uniform spin-density distribution in the ballistic regime of very narrow wires. With the decreasing wire width, the spin polarization exhibits a transition from the exponential decay to the oscillatory Bessel-type relaxation. The SPI method has also been employed to calculate the relaxation of the particularly long-lived helix mode. Good agreement has been found with calculations based on the diffusion theory.en_US
dc.language.isoen_USen_US
dc.subjectBessel functionsen_US
dc.subjectelectron spin polarisationen_US
dc.subjectmagnetic relaxationen_US
dc.subjectspin-orbit interactionsen_US
dc.titleSemiclassical path integral approach for spin relaxations in narrow wiresen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevB.79.125310en_US
dc.identifier.journalPHYSICAL REVIEW Ben_US
dc.citation.volume79en_US
dc.citation.issue12en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000264769300061en_US
dc.citation.woscount13en_US
顯示於類別:期刊論文


文件中的檔案:

  1. 5a35a812d75d23215b3207940dc6c9dd.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。