标题: | 由散射问题产生的二维内部传输特征值问题之数值研究 Numerical study of 2-dimensional interior transmission eigenvalue problems arising from scattering problems |
作者: | 任尉中 Jen, Wei-Chung 林文伟 Lin, Wen-Wei 应用数学系数学建模与科学计算硕士班 |
关键字: | 传输特征值;transmission eigenvalues |
公开日期: | 2013 |
摘要: | 逆散射问题中,我们的目标是由远场图(far field pattern)来决定散射物体的形状。在数值模拟中,我们首先解决内部传输特征值问题,二维内部传输特征值问题可以由两个拉普拉斯(Laplacian)特征值问题在某些限制形成的。通过解决该问题的几个最小传输特征值,我们可以构造物体在边界上的总场(total field)。利用边界上的信息,我们可以透过求解亥姆霍兹方程(Helmholtz equation)在狄利克雷边界条件(Dirichlet boundary condition)和罗宾边界条件(Robin boundary condition)下找到散射场(scattered field)。我们使用有限差分法和有限体积法将内部传输特征值问题等价地转换成二次特征值问题,藉由解二次特征值问题的几个最小特征值来计算在边界上的总场。最后,我们解散射问题来观察不同障碍中的散射场,并在最后一节给出一些数值结果。 The goal of the inverse problem is to determine the shapes of scattering objects using knowledge of the far field pattern. In numerical simulations, we firstly solve the interior transmission eigenvalue problem, and then the 2-dimensional interior transmission eigenvalue problem can be formed by two Laplacian eigenvalue problems under some restrictions. By solving a few lowest transmission eigenvalues of this problem, we can construct the total field on the boundary of the scattering object. Utilizing the information on the boundary, we can find the scattered field by solving the Helmholtz equation under Dirichlet and Robin boundary conditions. To carry out the the procedure outlined above, we use the finite difference method and the finite volume method to equivalently transfer the interior transmission eigenvalue problem to the quadratic eigenvalue problem. We then we solve a few lower eigenvalues of the quadratic eigenvalue problem to compute the total field on the boundary, finally, we solve the scattering problem to observe the scattered field with different obstacles and present some numerical results in the final section. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070152305 http://hdl.handle.net/11536/75261 |
显示于类别: | Thesis |