完整後設資料紀錄
DC 欄位語言
dc.contributor.author張民翰en_US
dc.contributor.authorChang, Min-Hanen_US
dc.contributor.author陳志榮en_US
dc.contributor.authorChen, Chih-Rungen_US
dc.date.accessioned2014-12-12T02:43:04Z-
dc.date.available2014-12-12T02:43:04Z-
dc.date.issued2013en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070152613en_US
dc.identifier.urihttp://hdl.handle.net/11536/75330-
dc.description.abstract在現在的商業、化學、工業等,使用控制圖去監控產品的品質是很常見的。藉由把產品的特徵給特徵化,已便去監控製成。在文獻中,剖面內的變異常常假設獨立, 然而這個假設在很多情況下是不適合的,因此階段二的多變量移動加權平均監控有相關誤差的非線性隨機效用剖面。一筆真實資料在Walker 跟 Wright (2002)被用來說明,並且做一些模擬說明我們提出的方法的實用性。zh_TW
dc.description.abstractThe technique of control charts for monitoring the quality of products is used in the modern business, chemistry, manufacturing, etc. It characterizes one or more quality characteristics of products to monitor a process. In the literature, it is commonly assumed that observations are independent within each profile; however, this assumption is inappropriate in many actual situations and thus a Phase II multivariate exponentially weighted moving average monitoring scheme for nonlinear random-effects profiles with correlated errors is proposed in the paper. A real data set in Walker and Wright (2002) and a simulation study are utilized to illustrate the usefulness and applicability of the proposed methodology.en_US
dc.language.isozh_TWen_US
dc.subject監控剖面zh_TW
dc.subject混合效用zh_TW
dc.subject相關誤差zh_TW
dc.subject多變量移動加權平均zh_TW
dc.subjectProfile monitoringen_US
dc.subjectMixed-effectsen_US
dc.subjectCorrelated errorsen_US
dc.subjectMultivariate exponential weighted moving averageen_US
dc.title階段二多變量移動加權平均監控相關誤差的非線性 隨機效用剖面zh_TW
dc.titleA Phase II Multivariate Exponentially Weighted Moving Average Monitoring Scheme for Nonlinear Random-Effects Profiles with Correlated Errorsen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文