完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 林楹凱 | en_US |
dc.contributor.author | Lin, Yin-Kai | en_US |
dc.contributor.author | 徐雍鎣 | en_US |
dc.contributor.author | Hsu, Yung-Jung | en_US |
dc.date.accessioned | 2014-12-12T02:44:02Z | - |
dc.date.available | 2014-12-12T02:44:02Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079718807 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/75754 | - |
dc.description.abstract | 本論文主要關注於使用一種簡單和容易的方法被開發以合成銅一價單晶(I)氧化物即(氧化亞銅)的顆粒具有良好定義的形貌,包括菱形十二面體,立方體,八面體,截角的八面體,球形結構。所得到的氧化亞銅晶體的形態是通過微調水熱合成法的比例和添加的陰離子濃度在130度下製備合成所所需要的各種奈米晶體的氧化亞銅結構與型態。實驗結果顯示,CO32-和SO32-離子,傾向於吸附特定生長面上如(110)和(100)晶面,此特定選擇性的陰離子在特定表面吸附的其因離子後會對其生長過程中形成形狀與形貌的影響,以控制氧化亞銅晶體的最終形態。因此我們選用常見的化學汙染物Rhodamine B (RhB)來進行的光催化降解其汙染物性能分析,其結果顯示具有八面體的氧化亞銅晶體因具有八面的(111)晶面,其表面能與吸附RhB 均具有較佳的效果,因此具有最好的光催化降解能力,與其他晶體相比較下發現,因為八面的(111)晶面具有最可反應與鍵結的銅側懸鍵,可以用來捕獲載子於吸收的RhB 的表面上,因而進一步提升其光催化降解能力。更進一步,此研究使用五次的循環光降解實驗,顯示出八面體氧化亞銅晶體可以有效地在光催化的長期過程下應用。因此,利用水熱法所製備合成的八面體氧化亞銅晶體是有希望於未來的光催化降解應用上,由於在其表面上大量存在的銅的側懸鍵更可應用於產氫或自由基的催化反應中,此章節中亦利用EPR做時間解析分析氧化亞銅晶體在單位時間上產生自由基的能力,其結果如出一轍的與光催化降解一致,因此具有八面體(111)晶體結構在未來的應用與使用是最有機會的半導體材料。 第二部分中,本文使用一種快速的且簡便的方式,利用其多功能的檸檬酸鈉鹽合成製備出帶有檸檬酸鈉鹽的奈米官能基化的金屬中心,包含有金、銀、鈀和鉑,進一步利用此具有官能基化的奈米金屬粒子,藉由其具有官能基化檸檬酸鈉鹽與氯化銅在水溶液配位,合成出發了金屬-氧化亞銅的核-殼奈米晶體結構。利用穩態光激發分析儀和光電流的測量進行了研究該金屬的電子捕獲效應在CO感測機構的特性與意義。分析測試此三個金屬奈米核-殼粒子,其中Au@Cu2O的核-殼結構中顯示出具有最高CO感測回應,歸咎於金(Au)為核的材料中具有最大的電子捕獲能力而增大電阻變化,提升以CO氣體感測的反應程度。其中以此金屬結構製備的核-殼奈米結構,表現出增強的一氧化碳(CO)感測性能,由於其具有金屬核的電子具有較好的電子捕獲能力,利用以金屬為核,氧化亞銅為殼的核-殼晶體結構,藉由由金屬引入方式來增加氣體敏感性能的提升,使得核-殼材料在具有氣體感測器技術的發展有顯著影響力存在。因此以p-type為主體的氣體感測器,藉由此金屬中心,可改善其初始電流值,換句話說與以往許多材料不斷的在開發表面金屬去吸附CO以提升氣體感測能力的概念是完全不同地,藉由此一設計概念與純的氧化亞銅材料相比較,可以發現有大幅度的提升其氣體感測能力與效果。 第三部份的主題利用第二部份的方式,製備出M@Cu2O的核-殼結構,更進一部,利用簡單的離子交換法,以M@Cu2O為模板,利用具有硫離子的單體在水溶液中進行交換,形成具有中空結構的核-殼奈米材料,此中空結構提高材料的比表面積,因此可以同時提高催化汙染物的能力。 此外由於核-殼奈米結構可以提高奈米材料的分散能力。例如,金奈米顆粒容易被內聚力影響導致團聚。由於這個原因,我們利用結合了核-殼結構有極好的分散性並結合中空奈米結構提供較高的比表面積與催化能力。此段落我們主軸以研究M@Cu7S4中空核-殼s奈米結構對4-NP的催化效果,並做了簡單的光學偏移分析。 | zh_TW |
dc.description.abstract | A simple and easy method was developed to synthesize single-crystal copper (I) oxide (Cu2O) particles with well-defined morphologies including rhombic dodecahedral, cubic, octahedral, truncated-octahedral, spherical structures. The morphology of the resulting Cu2O crystals was tailored by adjusting the type and concentration of added anions in the hydrothermal synthesis at 130 oC. Experimental results showed that CO32- and SO32- ions, which prefer to adsorb on the (110) and (100) planes, respectively, acted as selective face adsorption additives to control the final morphologies of Cu2O crystals during growth process. Their photo- catalytic performance toward rhodamine B (RhB) revealed that octahedral Cu2O crystals with (111) planes have the strongest ability to degrade RhB, compared to other crystals, since they have most Cu dangling bonds to trap carriers absorbing on the surface. Furthermore, the recycling test exhibited that octahedral Cu2O crystals could be effectively utilized in a long-term course of photocatalysis. The synthesized octahedral Cu2O crystals are promising for other photocatalytic applications due to abundant Cu dangling bonds on their surface. A fast, versatile citrate-binding approach has been developed to prepare metal-Cu2O core-shell nanocrystals with different metal compositions including Au, Ag and Pd. Metal-Cu2O nanocrystals exhibited enhanced CO sensing performance in comparison with pure Cu2O because of the electron trapping capability of the metal core. Steady-state photoluminescence and photocurrent measurements were conducted to investigate the electron trapping effect of the metal and its significance in the CO sensing mechanism. Among the three metal-Cu2O nanocrystals tested, Au-Cu2O displayed the highest CO sensing response, attributable to the largest electron trapping capability of Au which enlarged the extent of resistance change for CO detection. The ability to improve the gas sensing performance of Cu2O by means of metal introduction has significant implications in the development of gas sensor technology that especially the strategies of materials combination and heterostructure engineering. Hollow structure have provide the highly surface area that it can enhance the contact interface with pollutants for catalysis ability. In addition, core-shell nanostructure can improve dispersed ability of nanomaterials. For example, the nanoparticles of Au easily aggregated by the cohesion effect. Due to this reason, we combine the core-shell excellent dispersion and hollow structure provide higher surface area for catalysis. Thus, we investigate the M@Cu7S4 hollow core-shell nanostructures for catalysis with 4-NP. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 氧化亞銅 | zh_TW |
dc.subject | 氣體感測 | zh_TW |
dc.subject | 形狀控制 | zh_TW |
dc.subject | 光催化 | zh_TW |
dc.subject | Cuprous oxide | en_US |
dc.subject | gas sensor | en_US |
dc.subject | morphology | en_US |
dc.subject | photocatalystic | en_US |
dc.title | 氧化亞銅奈米晶體之型態控制與核殼結構: 氣體感測與光催化應用 | zh_TW |
dc.title | Morphological control and core-shell structures of cuprous oxide nanocrystals: Gas sensing and photocatalytic applications | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 材料科學與工程學系所 | zh_TW |
顯示於類別: | 畢業論文 |