Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Cheng-Hungen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:09:55Z-
dc.date.available2014-12-08T15:09:55Z-
dc.date.issued2007en_US
dc.identifier.isbn978-1-4244-0703-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/7579-
dc.identifier.urihttp://dx.doi.org/10.1109/FOCI.2007.372147en_US
dc.description.abstractThis study presents a functional-link-based fuzzy neural network (FLFNN) structure for temperature control. The proposed FLFNN controller uses functional link neural networks (FLNN) that can generate a nonlinear combination of the input variables as the consequent part of the fuzzy rules. An online learning algorithm, which consists of structure learning and parameter learning, is also presented. The structure learning depends on the entropy measure to determine the number of fuzzy rules. The parameter learning, based on the gradient descent method, can adjust the shape of the membership function and the corresponding weights of the FLNN. Simulation result of temperature control has been given to illustrate the performance and effectiveness of the proposed model.en_US
dc.language.isoen_USen_US
dc.titleA functional-link-based fuzzy neural network for temperature controlen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/FOCI.2007.372147en_US
dc.identifier.journal2007 IEEE Symposium on Foundations of Computational Intelligence, Vols 1 and 2en_US
dc.citation.spage53en_US
dc.citation.epage58en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000248503700008-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000248503700008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.