Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Yu-Tingen_US
dc.contributor.authorLee, Cheng-Fewen_US
dc.contributor.authorSheu, Yuan-Chungen_US
dc.date.accessioned2014-12-08T15:09:56Z-
dc.date.available2014-12-08T15:09:56Z-
dc.date.issued2009-03-01en_US
dc.identifier.issn0021-9002en_US
dc.identifier.urihttp://dx.doi.org/10.1239/jap/1238592117en_US
dc.identifier.urihttp://hdl.handle.net/11536/7597-
dc.description.abstractWe study defaultable bond prices in the Black-Cox model with jumps in the asset value. The jump-size distribution is arbitrary, and following Longstaff and Schwartz (1995) and Zhou (2001) we assume that, if default occurs, the recovery at maturity depends on the,severity of default'. Under this general setting, the vehicle for our analysis is an integral equation. With the aid of this, we prove some properties of the bond price which are consistent numerically and empirically with earlier works. In particular, the limiting credit spread as time to maturity tends to 0 is nonzero. As a by product, we show that the integral equation implies an infinite-series expansion for the bond price.en_US
dc.language.isoen_USen_US
dc.subjectJump diffusionen_US
dc.subjectdefault barrieren_US
dc.subjectbond priceen_US
dc.subjectcredit spreaden_US
dc.titleAN INTEGRAL-EQUATION APPROACH FOR DEFAULTABLE BOND PRICES WITH APPLICATION TO CREDIT SPREADSen_US
dc.typeArticleen_US
dc.identifier.doi10.1239/jap/1238592117en_US
dc.identifier.journalJOURNAL OF APPLIED PROBABILITYen_US
dc.citation.volume46en_US
dc.citation.issue1en_US
dc.citation.spage71en_US
dc.citation.epage84en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000265076900005-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000265076900005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.