Full metadata record
DC FieldValueLanguage
dc.contributor.authorKung, Tzu-Liangen_US
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorLiang, Tyneen_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.date.accessioned2014-12-08T15:09:56Z-
dc.date.available2014-12-08T15:09:56Z-
dc.date.issued2009-03-01en_US
dc.identifier.issn0304-3975en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.tcs.2008.11.004en_US
dc.identifier.urihttp://hdl.handle.net/11536/7599-
dc.description.abstractA bipartite graph G is bipanconnected if, for any two distinct vertices x and y of G, it contains an vertical bar x,y vertical bar-path of length l for each integer l satisfying d(G)(x, y) <= l <= vertical bar V(G)vertical bar - 1 and 2 vertical bar(l - d(G)(x, y)), where d(G)(x, y) denotes the distance between vertices x and y in G and V(G) denotes the vertex set of G. We say a bipartite graph G is bipanpositionably bipanconnected if, for any two distinct vertices x and y of G and for any vertex z is an element of V(G) - (x, y), it contains a path P(l,k) of length l Such that x is the beginning vertex of P(l,k), z is the (k + 1)-th vertex of P(l,k), and y is the ending vertex of P(l,k) for each integer l satisfying d(G)(x, z) + d(G)(y, z) <= l <= vertical bar V(G)vertical bar - 1 and 2 vertical bar(l - d(G)(x, z) - d(G)(y, z)) and for each integer k satisfying d(G)(x, z) <= k <= l -d(G)(y, z) and 2 vertical bar(k - d(G)(x, z)). In this paper, we prove that an n-cube is bipanpositionably bipanconnected if n >= 4. As a consequence, many properties of hypercubes, such as bipancyclicity, bipanconnectedness, bipanpositionable Hamiltonicity, etc., follow directly from our result. (C) 2008 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHamiltonian laceableen_US
dc.subjectBipancyclicen_US
dc.subjectBipanpositionableen_US
dc.subjectInterconnection networken_US
dc.subjectHypercubeen_US
dc.titleOn the bipanpositionable bipanconnectedness of hypercubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.tcs.2008.11.004en_US
dc.identifier.journalTHEORETICAL COMPUTER SCIENCEen_US
dc.citation.volume410en_US
dc.citation.issue8-10en_US
dc.citation.spage801en_US
dc.citation.epage811en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000263945000014-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000263945000014.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.