Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kung, Tzu-Liang | en_US |
dc.contributor.author | Lin, Cheng-Kuan | en_US |
dc.contributor.author | Liang, Tyne | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.date.accessioned | 2014-12-08T15:09:56Z | - |
dc.date.available | 2014-12-08T15:09:56Z | - |
dc.date.issued | 2009-03-01 | en_US |
dc.identifier.issn | 0304-3975 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.tcs.2008.11.004 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/7599 | - |
dc.description.abstract | A bipartite graph G is bipanconnected if, for any two distinct vertices x and y of G, it contains an vertical bar x,y vertical bar-path of length l for each integer l satisfying d(G)(x, y) <= l <= vertical bar V(G)vertical bar - 1 and 2 vertical bar(l - d(G)(x, y)), where d(G)(x, y) denotes the distance between vertices x and y in G and V(G) denotes the vertex set of G. We say a bipartite graph G is bipanpositionably bipanconnected if, for any two distinct vertices x and y of G and for any vertex z is an element of V(G) - (x, y), it contains a path P(l,k) of length l Such that x is the beginning vertex of P(l,k), z is the (k + 1)-th vertex of P(l,k), and y is the ending vertex of P(l,k) for each integer l satisfying d(G)(x, z) + d(G)(y, z) <= l <= vertical bar V(G)vertical bar - 1 and 2 vertical bar(l - d(G)(x, z) - d(G)(y, z)) and for each integer k satisfying d(G)(x, z) <= k <= l -d(G)(y, z) and 2 vertical bar(k - d(G)(x, z)). In this paper, we prove that an n-cube is bipanpositionably bipanconnected if n >= 4. As a consequence, many properties of hypercubes, such as bipancyclicity, bipanconnectedness, bipanpositionable Hamiltonicity, etc., follow directly from our result. (C) 2008 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Hamiltonian laceable | en_US |
dc.subject | Bipancyclic | en_US |
dc.subject | Bipanpositionable | en_US |
dc.subject | Interconnection network | en_US |
dc.subject | Hypercube | en_US |
dc.title | On the bipanpositionable bipanconnectedness of hypercubes | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.tcs.2008.11.004 | en_US |
dc.identifier.journal | THEORETICAL COMPUTER SCIENCE | en_US |
dc.citation.volume | 410 | en_US |
dc.citation.issue | 8-10 | en_US |
dc.citation.spage | 801 | en_US |
dc.citation.epage | 811 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000263945000014 | - |
dc.citation.woscount | 4 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.