Full metadata record
DC FieldValueLanguage
dc.contributor.author曾瑞閔en_US
dc.contributor.authorJui-Ming Tsengen_US
dc.contributor.author賴明治en_US
dc.contributor.authorMing-Chih Laien_US
dc.date.accessioned2014-12-12T02:45:16Z-
dc.date.available2014-12-12T02:45:16Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009222502en_US
dc.identifier.urihttp://hdl.handle.net/11536/76279-
dc.description.abstract在這篇論文裡,將會介紹三維 Poisson 方程在圓柱及球座標下簡單且有效率的四階緊緻解法。這個解法是由截斷(truncated)傅利葉級數展開式所產生,且得到一組傅利葉係數所形成的偏微分方程組,運用緊緻差分技巧,我們可以得到四階精確且不需奇異點條件的結果。接著利用兩種有效的迭代法(GMRES,BI-CGSTAB)來解離散後,傅利葉係數所形成非對稱的線性系統並配合不同的preconditioner。zh_TW
dc.description.abstractA simple and efficient compact fourth-order Poisson solver in cylindrical and spherical coordinates is presented. The solver relies on the truncated Fourier series expansion, where the differential equations of Fourier coefficients have been solved by fourth-order finite difference discretizations without pole conditions. And two kinds of efficient iterative method, GMRES and Bi-CGSTAB, with different preconditioners are applied to solve the resulted nonsymmetrical systems of Fourier coefficients.en_US
dc.language.isoen_USen_US
dc.subject快速傅利葉轉換zh_TW
dc.subject圓柱座標zh_TW
dc.subject球座標zh_TW
dc.subject對稱性zh_TW
dc.subjectFast Fourier Transformen_US
dc.subjectCylindrical coordinatesen_US
dc.subjectSpherical coordinatesen_US
dc.subjectSymmetry constrainten_US
dc.title三維Poisson方程在圓柱及球座標下之形式四階緊緻差分法zh_TW
dc.titleA formally fourth-order compact scheme for Poisson equation in cylindrical and spherical coordinatesen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 250201.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.