Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kueng, Tz-Liang | en_US |
dc.contributor.author | Liang, Tyne | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.date.accessioned | 2014-12-08T15:10:00Z | - |
dc.date.available | 2014-12-08T15:10:00Z | - |
dc.date.issued | 2009-02-15 | en_US |
dc.identifier.issn | 0020-0255 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.ins.2008.10.015 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/7628 | - |
dc.description.abstract | Let F be a set of f <= 2n - 5 faulty nodes in an n-cube Q(n) such that every node of Q(n) still has at least two fault-free neighbors. Then we show that Q(n) - F contains a path of length at least 2(n) - 2f - 1 (respectively, 2(n) - 2f - 2) between any two nodes of odd (respectively, even) distance. Since the n-cube is bipartite, the path of length 2(n) - 2f - 1 (or 2(n) - 2f - 2) turns out to be the longest if all faulty nodes belong to the same partite set. As a contribution, our study improves upon the previous result presented by [J.-S. Fu, Longest fault-free paths in hypercubes with vertex faults, Information Sciences 176 (2006) 759-771] where only n - 2 faulty nodes are considered. (c) 2008 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Interconnection network | en_US |
dc.subject | Hypercube | en_US |
dc.subject | Fault tolerance | en_US |
dc.subject | Conditional fault | en_US |
dc.subject | Linear array | en_US |
dc.subject | Path embedding | en_US |
dc.title | Long paths in hypercubes with conditional node-faults | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.ins.2008.10.015 | en_US |
dc.identifier.journal | INFORMATION SCIENCES | en_US |
dc.citation.volume | 179 | en_US |
dc.citation.issue | 5 | en_US |
dc.citation.spage | 667 | en_US |
dc.citation.epage | 681 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000262768400019 | - |
dc.citation.woscount | 25 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.