標題: 兩個耦合雙細胞類神經網路的動態系統
Dynamics in coupled two two-cell Cellular Neural Network systems
作者: 劉玟毅
Wen-Yi Liu
林松山
Song-Sun Lin
應用數學系所
關鍵字: 細胞類神經網路;混沌;Lyapunov 指數;Cellular Neural Networks;CNN;chaos;lady's shoe;Lyapunov exponent
公開日期: 2004
摘要: 在本篇論文中,我們研究具有四個細胞之類神經網路模型的混沌行為,此模型可以視為兩個雙細胞類神經網路的組合,而且這兩個類神經網路之間是有交互影響的;如果我們只考慮其中一個類神經網路的話,這與Zou & Nossek[19]以及楊定揮的博士論文[22]的情況是不一樣的,他們所考慮的模型是一個有平滑輸入函數的非自主性﹙non-autonomous﹚系統,而我們的模型是以片段型線性函數作為輸入函數的自主性﹙autonomous﹚系統,此輸入函數是跟細胞本身以及輸出函數有關係的。在某些參數範圍,我們找到形如高跟鞋的混沌吸引子﹙chaotic attractor﹚。為了研究四個細胞之類神經網路的分歧和混沌現象,我們使用快速傅利葉轉換﹙Fast Fourier Transform﹚與計算Lyapunov指數﹙Lyapunov exponent﹚等數值方法。此外,我們也發展出一套用來計算Lyapunov指數的演算法,而且這個演算法是同時適用於自主性與非自主性的系統。
In this thesis we study the chaotic behavior of four-neuron cellular neural networks model, this model can be treated as the combination of two two-neuron cellular neural networks and there are interactions between these two neural networks. If we only consider one of them, this is different from the case in ZN-case\cite{Zou1} and T.H.Yang's Ph.D Thesis\cite{Lin4}. The model they considered is a non-autonomous system with smooth input function. The one we consider is an autonomous system with piecewise-linear input which is related to neuron itself and output function. In some parameters ranges, we find a ladyshoe-like chaotic attractor. The numerical methods employed are of Fast Fourier Transform and Lyapunov exponents to study the bifurcation and chaotic phenomena of four-neuron neural network. Furthermore, an algorithm for computing Lyapunov exponents which is both adapted for autonomous and non-autonomous system is developed.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009222507
http://hdl.handle.net/11536/76301
顯示於類別:畢業論文


文件中的檔案:

  1. 250701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。