完整後設資料紀錄
DC 欄位語言
dc.contributor.author蔡維哲en_US
dc.contributor.authorWei-Che Tsaien_US
dc.contributor.author劉晉良en_US
dc.contributor.authorJinn-Liang Liuen_US
dc.date.accessioned2014-12-12T02:45:21Z-
dc.date.available2014-12-12T02:45:21Z-
dc.date.issued2004en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009222517en_US
dc.identifier.urihttp://hdl.handle.net/11536/76368-
dc.description.abstract在這一篇論文中有二個部分。在第一個部分裡,我們主要探討電子限制在量子奈米結構中的情況。我們主要學習使用self-consistence迭代方式來處理一個非線性偏微分系統,這系統是由普瓦松方程式與薛丁格方程式共同組成。藉由這個非線性偏微分系統來描述電子在量子奈米結構中的變化。在第二個部分裡,我們嘗試使用許正餘教授在密度泛函理論所推導出來一個新的公式,從這新的公式出發,使用有限元素法希望能夠得到電子在原子與分子結構中很好的描述,我們在處理這問題同時,也嘗試學習使用更有效率的數值方法來處理有限元素法整理出來的大型矩陣。zh_TW
dc.description.abstractThere are two parts in the thesis. In the first part, we discuss that electrons confine in quantum nanostructures. We use self-consistence iteration method for solving the nonlinear PDE system. The system consists of Poisson equation and Schrodinger equation. It describes the electronic changes in quantum nanostructures by the nonlinear PDE system. In the second part, we try to compute a new formulation derived by Prof. Hsu. From the formulation, we hope to get good numerical results by using finite element method. The main goal of this thesis is to simulate electronic properties of well-known atomic models by using our still under development finite element codes for future research on density functional theory.en_US
dc.language.isoen_USen_US
dc.subject有限元素法zh_TW
dc.subject密度泛函理論zh_TW
dc.subject自洽zh_TW
dc.subject薛丁格方程zh_TW
dc.subject普瓦松方程zh_TW
dc.subjectFinite Element Methoden_US
dc.subjectDensity Functional Theoryen_US
dc.subjectKohn Sham Equationen_US
dc.subjectJacobi-Davidson Methoden_US
dc.subjectPreconditioned Conjugate Gradienten_US
dc.subjectself-consistenceen_US
dc.subjectSchrodinger Equationen_US
dc.subjectPoisson Equationen_US
dc.titleㄧ個新密度泛函理論推導公式之三維有限元素解zh_TW
dc.title3D finite element solution of a new formulation in density functional theoryen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 251701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。