完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 呂明欣 | en_US |
dc.contributor.author | Ming-hsing Lu | en_US |
dc.contributor.author | 翁志文 | en_US |
dc.contributor.author | Chih-wen Weng | en_US |
dc.date.accessioned | 2014-12-12T02:45:30Z | - |
dc.date.available | 2014-12-12T02:45:30Z | - |
dc.date.issued | 2004 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009222524 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/76434 | - |
dc.description.abstract | 在一個直徑d > 3的距離正則圖中,若相交參數a_1 = 0,a_2不等於0,我們證明下列 (i)-(ii) 是等價的。(i)此圖是Q-polynomial,且不包含長度為3的平行四邊形;(ii)此圖具有古典參數。引用上述的結果,我們顯示了,如果距離正則圖具有古典參數且相交參數a_1 = 0,a_2不等於0,那麼對每一組圖中的點(v,w) ,若距離(v,w)=2 ,則此圖存在一個強正則子圖包含v及w。並且,對強正則子圖中所有的點x,在強正則子圖中,所有與x距離為2的點的導出子圖是一個直徑最多為3的a_2-正則連通圖。 | zh_TW |
dc.description.abstract | Let a distance-regular graph with diameter 3. Suppose the intersection number a_1 = 0,a_2 is not equal to 0, We prove the following (i)-(ii) are equivalent. (i)This graph is Q-polynomial and contains no parallelograms of length 3; (ii)This graph has classical parameters. By applying the above result we show that if a distance-regular graph has classical parameters and the intersection numbers a_1 = 0,a_2 is not equal to 0,then for each pair of vertices (v,w) at distance 2, there exists a strongly regular subgraph of the graph containing (v,w). Furthermore, for each vertex x in the strongly regular subgraph, the subgraph induced on all the vertices y which (x,y) at distance 2 in the strongly regular subgraphis is an a_2-regular connected graph with diameterat most 3. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 距離正則 | zh_TW |
dc.subject | 無三角形 | zh_TW |
dc.subject | distance-regular | en_US |
dc.subject | triangle-free | en_US |
dc.title | 無三角形距離正則圖之研究 | zh_TW |
dc.title | Triangle-free distance-regular graphs | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |