完整後設資料紀錄
DC 欄位語言
dc.contributor.author李育松en_US
dc.contributor.authorYu-Sung Leeen_US
dc.contributor.author曾憲雄en_US
dc.contributor.authorShian-Shyong Tsengen_US
dc.date.accessioned2014-12-12T02:46:02Z-
dc.date.available2014-12-12T02:46:02Z-
dc.date.issued2004en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009223590en_US
dc.identifier.urihttp://hdl.handle.net/11536/76641-
dc.description.abstract隨著資訊科技不斷的演進,也伴隨著產生許多的變異物件。然而變異物件產生速度不斷的加快,專家尋找變異物件所花費的精神也越加繁重。VODKA是一個發現變異物件的知識擷取方法,可以協助找出隱藏在真實世界中的變異物件。然而隨著變異物件產生速度不斷的加快,VODKA提供的情境(Context)資訊太少,導致決策時需耗費較多的精神。因此,在本篇論文中,延伸之前的VODKA,使它能提供更多資訊輔助領域專家分析變異物件。也就是說,在本地端有些確認程度(CF)較低的變異物件即使有情境資訊的輔助,在單一台機器上並不容易辨識,容易有不確認的情況。因此,提出ㄧ個合作式的變異物件分析專家系統,藉由多台VODKA的回報資訊,系統化的分析是否有變異物件產生。而在本篇論文的應用實例中,將延伸型的VODKA應用在電腦蠕蟲這個領域,結果顯示,實作此合作式的變異蠕蟲分析專家系統,分析多台的回報資訊,可以輔助領域專家發掘本地端不易確認的複雜變異蠕蟲。zh_TW
dc.description.abstractWith the rapid growth of variant objects, domain experts might not be easy to keep up with the dramatically increasing knowledge. Although Variant Object Discovering Knowledge Acquisition (VODKA) is proposed to discover variant objects in our real world, it still provides insufficient context information and results in the heavy confirmation effort of domain experts. Hence, we propose extended VODKA to supply more context information for helping experts make correct decision in this thesis. However, several uncertain cases might not be discovered and learned in local environment because the context information might be not enough to determine whether it is a variant occurred in local or not. Therefore, a collaborative analysis expert system is proposed to solve those local uncertain cases according to the meta knowledge including environment factors and domain specific heuristic criteria. The construction of meta knowledge is also proposed based upon the Repertory Grid and Attributes Ordering Table to automatically generate corresponding collaborative analysis rules. Finally, the collaborative defending system for computer worms is implemented to evaluate extended VODKA. As a result, the implementation of collaborative defending system can assist domain experts to discover several sophisticated worms which can not be learned in the local environment.en_US
dc.language.isoen_USen_US
dc.subject變異物件zh_TW
dc.subject知識擷取zh_TW
dc.subject專家系統zh_TW
dc.subject電腦蠕蟲zh_TW
dc.subject惡意程式zh_TW
dc.subject變種蠕蟲zh_TW
dc.subjectVariant Objectsen_US
dc.subjectKnowledge Acquisitionen_US
dc.subjectExpert Systemen_US
dc.subjectComputer Wormsen_US
dc.subjectVariant Wormsen_US
dc.title一個基於蠕蟲的合作式防禦系統zh_TW
dc.titleCollaborative Defending System for Computer Wormsen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 359001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。