完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 施倫閔 | en_US |
dc.contributor.author | Samuel Lun-Min Shih | en_US |
dc.contributor.author | 譚建民 | en_US |
dc.contributor.author | Jimmy J.M. Tan | en_US |
dc.date.accessioned | 2014-12-12T02:46:06Z | - |
dc.date.available | 2014-12-12T02:46:06Z | - |
dc.date.issued | 2004 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009223606 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/76656 | - |
dc.description.abstract | 在訊息傳遞中, 在每個接收點是要避免碰撞的事件發生, 因此訊息傳送路徑中互相獨立的特性是相當重要的. 我們說兩條相同長度的路徑是獨立的, 就代表著除了起始點與終點之外, 其餘的時間點中, 在同一個時間所經過的目標是不會相同的; 在這篇論文中, 我們探討研究了在 n 維超立方體中, 任意的兩點中可以存在著(n-1)條任意長度之互相獨立的路徑, 其長度由兩點間最短(漢明距離)到最長(漢米爾頓距離)都有. | zh_TW |
dc.description.abstract | We say that two paths P0= <u0,u1,...uk-1> and P1= <v0,v1,...,vk-1> are independent if u0=v0, l(P0)=l(P1) and P0(i)!=P1(i) fro every 1<i<k-1. The set of paths {P0,P1,...,Ps} of G are mutually independent if any two different paths in the set are independent. In this paper, we prove that there exist (n-1) mutually independent paths of length l joining any vertices u and v such that h(u,v)+2 <= l <= 2^n-1 and n>=4. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 互相獨立 | zh_TW |
dc.subject | 超立方體 | zh_TW |
dc.subject | 嵌入 | zh_TW |
dc.subject | Mutually independent | en_US |
dc.subject | Hypercube | en_US |
dc.subject | Embedding | en_US |
dc.title | 超立方體中互相獨立線性配置之嵌入研究 | zh_TW |
dc.title | Mutually Independent Linear Array Embeddings in Hypercubes | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊科學與工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |