標題: 應用離子液體與線上濃縮方法於毛細管電泳藥物分析之研究
Capillary electrophoresis for the analysis of drugs of abuse by using ionic liquids and on-line preconcentration methods
作者: 蘇秀麗
Su, Hsiu-Li
謝有容
Hsieh, You-Zung
應用化學系碩博士班
關鍵字: 毛細管電泳;離子液體;線上濃縮;capillary electrophoresis;ionic liquid;on-line preconcentration
公開日期: 2008
摘要: 大麻和古柯鹼近年來在社會上濫用事件頻傳,且有快速增加的趨勢,現今在台灣已引起廣泛的關注;另外,苯二氮平和抗憂鬱劑經常的使用,對於現代人長期處於緊繃之社會壓力下,逐漸轉成一種變相紓壓管道。這些藥物於日常生活中皆習習相關,不管是自身或是他人不當之使用,而影響人體健康進而造成嚴重之社會問題,都需要受到重視的。因此,建立一個簡便和靈敏的檢測方式,快速應用於生物檢體中藥物之定性及定量分析,已是刻不容緩。 毛細管電泳法具有高效率分離和樣品用量少的優點,尤其對於檢測生物檢體中藥物濃度高低,更可精確判斷出用藥是否過當。本篇論文主要分成兩大主題,第一部份為高解析度及再現性之毛細管技術開發;第二部份則為高靈敏度線上濃縮技術的開發。首先,以chaotropic salts和離子液體作為毛細管電泳分析技術之修飾劑,分別添加於分離之緩衝溶液中,發現其對於苯二氮平的分離效果,皆有顯著的影響,結果顯示這兩種修飾劑皆具有相當良好之選擇性。 第二部份中,為了克服毛細管電泳因光徑短造成分析靈敏度降低的困難,選擇線上濃縮方法。首先,應用離子液體型態的陽離子界面活性劑C16MIMBr和C16MPYB對苯二氮平進行掃掠式線上濃縮,此型態離子液體因其具有微胞特質,故藉此應用於線上濃縮方法之開發上,實驗結果和傳統的陽離子界面活性劑CTAB相較下,C16MPYB具有較高之放大倍率,而此結果可適用於偵測尿液中苯二氮平的存在。其次,在大麻和其代謝物之檢測分析上,以陰離子界面活性劑搭配掃掠式線上濃縮方法,成功的降低方法的偵測極限。 最後,為了能進一步提高分析方法之偵測靈敏度,利用陽離子選擇性注入方式搭配掃掠式線上濃縮方法之技術,對古柯鹼及其代謝物和抗憂鬱劑等藥物進行檢測分析,發現其偵測極限更低於單一掃掠式線上濃縮方法,且顯示出良好的定性與定量分析。將上述開發之線上濃縮方法搭配固相萃取管的使用,用於生物檢體中之尿液和血漿檢測上,可將真實樣品中雜質除去,成功檢測出藥物存在,因此,此發展之毛細管電泳檢測分析方法,對於未來應用在相關臨床或法庭上之濫用藥物檢測,的確為一快速簡便又精確的分析方法。
Determination of the drug concentration in biological fluids can indicate whether drug is abused or not. We used capillary electrophoresis (CE), a rapid, simple, and highly efficient method, to determine the levels of four kinds of drugs of abuse—Δ9-tetrahydrocannabinol, cocaine, benzodiazepines, and selective serotonin reuptake inhibitors (SSRIs)—in various biological fluids to provide information relating to their clinical analysis and toxicology. Δ9-Tetrahydrocannabinol and cocaine are being abused at increasing levels in present-day Taiwan. Benzodiazepines and SSRIs are used for the treatment of psychological disorders, particularly those associated with the high levels of stress encountered in modern society. These drugs play important roles in the lives of many people. Therefore, convenient and sensitive methods are required to monitor and quantify their levels in the human body. We developed CE methods employing chaotropic salts and ionic liquids (ILs) to improve the resolution of seven benzodiazepines. We studied the influence of several chaotropic salts on the separation of the benzodiazepines.We also tested three ILs as additives for their ability to increase the separation efficiency. These types of modifiers all exhibited particular separation selectivities. On-line preconcentration is one approach toward improving the limits of detection (LODs) of CE systems employing detectors of short optical path-lengths. First, we used the IL-type cationic surfactants 1-cetyl-3-methylimidazolium bromide (C16MIMBr) and N-cetyl-N-methylpyrrolidinium bromide (C16MPYB) in sweeping-micellar electrokinetic chromatography (sweeping-MEKC) for the analysis of benzodiazepines. From comparisons with traditional cationic surfactants cetyltrimethylammonium bromide (CTAB), we found that the IL-type surfactant C16MPYB were suitable sweeping-MEKC additives for the on-line sample preconcentration. The enrichment factors for the seven benzodiazepines, when using sweeping-MEKC with C16MPYB, fell within the range 86–165. Next, we determined Δ9-tetrahydrocannabinol and its major metabolites through sweeping-MEKC using the anionic surfactant sodium dodecyl sulfate (SDS). We found that the anionic surfactant SDS was a suitable additive for sweeping-MEKC. The enrichment factors for THC, THC-COOH, and THC-OH under sweeping-MEKC were 77, 139, and 200, respectively. To improve the sensitivity, we combined the two on-line concentration techniques. We employed sweeping-MEKC coupled with selective electrokinetic injection, so-called CSEI-sweeping-MEKC, to determine the levels of two systems—(i) cocaine and it metabolites and (ii) SSRIs—with satisfactory quantitative and qualitative data. The enrichment factors for cocaine, norcocaine, cocaethylene, and benzoylecgonine when using CSEI-sweeping-MEKC ranged from 1.75 □ 103 to 3.96 □ 104. The enrichment factors for SSRIs when using CSEI-sweeping-MEKC, relative to MEKC, fell within the range from 5.68 □ 104 to 1.19 □ 105. Finally, we applied the optimized on-line preconcentration conditions—in conjunction with solid-phase extraction—to examine urine and plasma samples. These methods can all be applied successfully to the analysis of real samples. Therefore, these CE techniques are extremely applicable to the analysis of drugs of abuse in both clinical and forensic settings.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009225563
http://hdl.handle.net/11536/76852
顯示於類別:畢業論文