標題: 類別資料在兩個經驗貝氏模型中的模型選取技術
A Model Selection Technique between Two Empirical Bayes Models for Categorical Data
作者: 劉振熒
Chen-Ying Liu
陳志榮
Chih-Rung Chen
統計學研究所
關鍵字: 經驗貝氏;製程監控;類別資料;beta-二項式;Dirichlet-多項式;變換-常態-二項式;變換-常態-多項式;Empirical Bayes;Process monitoring;Categorical data;Beta-binomial;Dirichlet-multinomial;Transformed-normal-binomial;Transformed-normal-multinomial
公開日期: 2004
摘要: 在本篇論文中,首先我們提出一個對於製程中的類別資料在兩個經驗貝氏模型中的模型選取技術。然後我們簡介可用於製程中類別資料的兩個有用的經驗貝氏模型。最後舉一個例子並透過模擬實驗來展示所提出的方法之表現。
In the paper, first of all, a model selection technique between two empirical Bayes models for categorical data in manufacturing is proposed. Next, two useful empirical Bayes models for categorical data in manufacturing are introduced. Finally, the performance of the proposed method is illustrated by an example through simulations.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009226501
http://hdl.handle.net/11536/76875
顯示於類別:畢業論文


文件中的檔案:

  1. 650101.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。