Full metadata record
DC FieldValueLanguage
dc.contributor.author戴如美en_US
dc.contributor.authorRu-Mei Daien_US
dc.contributor.author洪慧念en_US
dc.contributor.authorDr. Hui-Nien Hungen_US
dc.date.accessioned2014-12-12T02:47:22Z-
dc.date.available2014-12-12T02:47:22Z-
dc.date.issued2004en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009226510en_US
dc.identifier.urihttp://hdl.handle.net/11536/76884-
dc.description.abstract在日常生活或生物基因方面,變數之間總會有影響與被影響的情形發生;在這篇文章中,最主要的目標是希望將變數間有因果關係的資料,經由統計的方法,判斷出因果圖形結構之方向性,及探討模型假設對其結果之影響。 在這個領域之中,有很多科學家及統計學家提出了一些方法如:線性模型(D’haeseleer et al, 1999)、非線性模型(Weaver et al, 1999)、布爾數學邏輯網路模型 (Kauffman 1993, Somogyi and Sniegoski, 1996)等;隨後,Murphy and Mian (1998) 和 Friedman(1999)等人提出貝氏網路模型(Bayesian Network)。在這篇文章中,試著結合貝氏的概念並探討使用概似函數的方法來分析變數間的因果關係,並希望能判斷出變數間圖形之方向性。zh_TW
dc.description.abstractIn daily life or biological gene, there always exists variables which inference other variables or are influenced by some others. In this paper, our main goal is to analyze the variables which have causality by using statistical methods, to determine the directionality among causality graphs, and to find out the impact of model assumption on those methods. In this field, lots of scientists and statisticians have proposed several methods, for example, linear models (D’haeseleer et al., 1999), nonlinear models (Weaver et al., 1999), and Boolean networks (Kauffman 1993, Somogyi and Sniegoski, 1996), etc. However, there should be some assumptions in all of these models. Murphy and Mian (1998) and Friedman et al. (1999) have suggested that use Bayesian network models of gene expression networks to get some improvements. In this paper, we discuss the concept of Bayesian’s method and using likelihood functions to analyze the causality between two and three variables. We hope to determine the direction between variables.en_US
dc.language.isozh_TWen_US
dc.subject基因網路zh_TW
dc.subject因果關係zh_TW
dc.subject概似函數zh_TW
dc.subject貝氏推論zh_TW
dc.subject計分函數zh_TW
dc.subjectGene Networken_US
dc.subjectCausalityen_US
dc.subjectLikelihood Functionen_US
dc.subjectBayesian Inferenceen_US
dc.subjectScore Functionen_US
dc.title模型假設對分析變數間因果關係的影響zh_TW
dc.titleThe Impact of Model Assumption for Analyzing the Causality between Variablesen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 651001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.