完整后设资料纪录
DC 栏位语言
dc.contributor.author高立人en_US
dc.contributor.authorLih-Jen Kauen_US
dc.contributor.author林源倍en_US
dc.contributor.authorYuan-Pei Linen_US
dc.date.accessioned2014-12-12T02:48:05Z-
dc.date.available2014-12-12T02:48:05Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT008912801en_US
dc.identifier.urihttp://hdl.handle.net/11536/77079-
dc.description.abstract非失真影像编码在许多场合皆有其应用之需求性;例如医学影像编码、远端感测,以及影像压缩等。在进行非失真影像编码过程中,如何有效地移除统计累赘至今仍是讯号源编码研究领域的一个主要挑战课题。因此已有许多关于非失真影像编码的方法被提出。其中有部分的研究系使用可还原小波转换。然而由各项文献中可以发现,使用转换编码所得到的结果往往却不若以空间域之预测编码结合环境建模(predictive coding with context modeling in spatial domain)所得到之结果来的好。

在本篇论文中,我们将针对近年来非失真影像编码之概况做一简介。此外我们亦将提出一基于线性预测之架构并以最小平方法进行此预测器系数之修正。由于使用最小平方法进行预测器系数之修正具有所谓边界导向之特性(edge-directed characteristic),因此对于位处影像边界附近像素之预测具有非常良好的效果。然而若将整张图像皆以最小平方法进行预测器系数之修正势将导致极高之复杂度,因此我们提出当编码过程遭遇影像之边界时才以最小平方法进行预测器系数之修正;如此运算复杂度将可大幅地降低。为了能够于编码过程中事先侦测影像边界之存在与否,我们提出了一个非常简易、有效而且仅使用已扫瞄/编码像素(causal pixels)的边界侦测法。如此一来我们的系统便可以预知影像边界存在与否,并在遭遇边界时,事先以最小平方法进行预测器系数之修正以防范较大预测误差之发生。在我们所提出的方法中仅使用到已扫瞄/编码像素来进行预测编码;因此并无需传送额外之资讯。经由实验证明,我们所提出的方法能够有效地在预测结果与运算复杂度之间取得良好的平衡点。此外我们也透过大量的实验并针对当前非失真影像压缩领域最先进的预测器(predictor)与编码器(coder)进行比较来证明所提出方法之可用性。

除上述所提出具边界前瞻(edge-look-ahead)能力之非失真预测编码架构外,我们发现较大的预测误差通常好发于影像中具有边界之处。因此,我们在本篇论文中提出一创新概念,亦即利用控制工程的技术来改进影像中位于边界附近像素之预测结果。之所以有这样的想法是因为我们瞭解控制系统的目的本就是希望系统的输出能够准确地遵循所输入之控制命令;因此在目的上与预测编码是一致的。此外影像中的边界(亦即像素的急速变化)亦可视为控制系统中的步阶命令(step command)。基于前述的观察使我们产生了尝试以控制方法来改进预测编码效能的想法。为了实现这样想法,我们也以Takagi以及Sugeno两位学者所提出之模糊类神经网路实做了一适应性预测编码架构。此外我们也将控制领域中经常被使用的Proportional Controller(P型控制器)实现于此一模糊类神经网路中以强化影像中位于边界像素之预测结果。我们发现这样的作法对于预测编码的效能改善确实是有所帮助的;虽然目前的改进效果并不是那么地显着,但是这样的概念的确为非失真影像预测编码领域开启了一个全然不同的问题思考以及解决方式。
zh_TW
dc.description.abstractLossless image coding is required by many applications, such as medical imaging, remote sensing, and image archiving. It has remained a major challenge to source coding community for the difficulty of removing statistical redundancy effectively and efficiently. Therefore, many approaches have been proposed for lossless compression of images. Among proposed approaches, some of which are based on reversible transform coding, like integer wavelet transformation. However, we find in literatures that the results obtained by using transform coding are typically inferior to that of obtained by predictively encoded techniques with context modeling in spatial domain.

In this dissertation, an introduction on recent advances in lossless image coding will be given. Moreover, we will propose an approach based on linear predictive coding with least-squares (LS) optimization for the adaptation of predictor coefficients. The LS-based adaptive predictor, for its edge-directed characteristic, has been shown to be useful for the prediction of pixels around boundaries. Instead of performing LS adaptation in a pixel-by-pixel manner, we adapt the predictor coefficients only when an edge is detected so that the computational complexity can be significantly reduced. For this, we propose a simple yet effective edge detector using only causal pixels. This way, the proposed system can look ahead to determine if the coding pixel is around an edge and initiate the LS adaptation in advance to prevent the occurrence of a large prediction error. Furthermore, only causal pixels are used for estimating the coding pixels in the proposed encoder; no additional side information needs to be transmitted. As we will see later in the experiments, a very good trade-off between prediction results and the computational complexity can be obtained with the proposed approach. Besides, extensive experiments as well as comparisons to existing state-of-the-art predictors and coders will be given to demonstrate the usefulness of the proposed approach.

In addition to the proposed edge-look-ahead approach, we find a large prediction error can usually take place for pixels around boundaries. Therefore, we also propose in this dissertation a novel concept of using control technologies to improve prediction result for pixels around boundaries. This idea comes from the fact that the purpose of a control system is to follow the input command as precisely as possible, which has the same objective with predictive coding. Moreover, an edge or a boundary can be regarded as a step command in control system. The above observations lead to the idea of solving this problem using control technologies. To realize this idea, we also implement an adaptive predictor using Takagi-Sugeno fuzzy neural network (TS-FNN). Moreover, the widely used proportional controller in control theory is applied implicitly in the consequent part of the network as a compensator to enhance the prediction result around edges. The effectiveness of the proposed novel approach, though not very conspicuous at present, can be further improved if a more sophisticated compensator is applied, and what's more, we have brought up an idea of solving this problem in a quite different aspect for lossless compression of images.
en_US
dc.language.isoen_USen_US
dc.subject非失真影像压缩zh_TW
dc.subject预测编码zh_TW
dc.subject最小平方法zh_TW
dc.subject边界前瞻zh_TW
dc.subject环境建模zh_TW
dc.subject误差补偿zh_TW
dc.subject熵值编码zh_TW
dc.subject算数编码zh_TW
dc.subject长度编码zh_TW
dc.subjectP型控制器zh_TW
dc.subjectLossless image compressionen_US
dc.subjectPredictive codingen_US
dc.subjectLeast squares optimizationen_US
dc.subjectEdge-look-aheaden_US
dc.subjectContext modelingen_US
dc.subjectError compensationen_US
dc.subjectEntropy codingen_US
dc.subjectArithmetic codingen_US
dc.subjectRun-length encodingen_US
dc.subjectP-controlleren_US
dc.title具边界前瞻之非失真影像预测编码技术zh_TW
dc.titlePredictively Encoded Techniques with Edge-look-ahead for Lossless Compression of Imagesen_US
dc.typeThesisen_US
dc.contributor.department电控工程研究所zh_TW
显示于类别:毕业论文


文件中的档案:

  1. 280101.pdf

若为 zip 档案,请下载档案解压缩后,用浏览器开启资料夹中的 index.html 浏览全文。