Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Shyan-Shiouen_US
dc.contributor.authorShih, Chih-Wenen_US
dc.date.accessioned2014-12-08T15:10:06Z-
dc.date.available2014-12-08T15:10:06Z-
dc.date.issued2009-01-30en_US
dc.identifier.issn0960-0779en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.chaos.2007.01.103en_US
dc.identifier.urihttp://hdl.handle.net/11536/7718-
dc.description.abstractAdmitting both transient chaotic phase and convergent phase, the transiently chaotic neural network (TCNN) provides superior performance than the classical networks in solving combinatorial optimization problems. We derive concrete parameter conditions for these two essential dynamic phases of the TCNN with piecewise linear output function. The confirmation for chaotic dynamics of the system results front a successful application of the Marotto theorem which was recently clarified. Numerical simulation on applying the TCNN with piecewise linear output function is carried out to find the optimal solution of it travelling salesman problem. It is demonstrated that the performance is even better than the previous TCNN model with logistic output function. (C) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleTransiently chaotic neural networks with piecewise linear output functionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.chaos.2007.01.103en_US
dc.identifier.journalCHAOS SOLITONS & FRACTALSen_US
dc.citation.volume39en_US
dc.citation.issue2en_US
dc.citation.spage717en_US
dc.citation.epage730en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000265368800024-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000265368800024.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.