完整後設資料紀錄
DC 欄位語言
dc.contributor.author沈紋任en_US
dc.contributor.author王克陸en_US
dc.date.accessioned2014-12-12T02:48:48Z-
dc.date.available2014-12-12T02:48:48Z-
dc.date.issued2004en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009239514en_US
dc.identifier.urihttp://hdl.handle.net/11536/77341-
dc.description.abstract本研究試圖運用類神經網路模型,以上市公司為研究對象,取用三個年度的公司財務資料,來建構視覺化之財務預警模型。而建構財務預警模型的最大目的在於提早發現企業內部潛在的財務危機,藉此提供投資人及金融機構一個參考警訊,避免投資或提供融資給體質不佳而可能發生財務危機的公司,進而減少其資金的損失;同時,也能提供給公司管理階層做為早期發現危機徵兆的參考,促使公司及早進行營運控管,而避免財務危機事件的發生。本研究的實證內容分為兩部份:一為利用公司單一年度財務資料分組訓練,並觀察模型訓練後之結果,以得知所建構之預警模型的危機樣本辨識能力受到採樣資料距離危機發生年度遠近影響的程度。而另一部份則為採用單一年度財務資料的模型訓練結果與三個年度的財務資料,來觀察危機樣本公司跨年度的財務表現變化情形。綜合本研究之實證結果來看,透過本研究所建立之財務預警模型,確實能夠觀察出公司跨年度的財務表現變化情形,並達到事前預警的目的。zh_TW
dc.description.abstractThis study tries to construct a visualed early warning model of financial distress for the listed companies in Taiwan using the self organization map method. The result can help the investor find out the problem companies in the future, and warn the managers to modify the operational strategy. The first part of the study is to train the model using the financial ratios in the financial statements. The model’s early warning ability and how it is affected by the input data can be analyzed. The second part is to check the tracks of financial ratios of the distressed companies over a three year period. In this way we can really observe the financial performance of these distressed companies going from bad to worse in three years. Although much to be done, the results of this study show that the SOM model can achieve the purpose for visualized warning of problem companies in advance.en_US
dc.language.isozh_TWen_US
dc.subject財務危機zh_TW
dc.subject視覺化預警模型zh_TW
dc.subject類神經網路zh_TW
dc.subjectFinancial Distressen_US
dc.subjectVisualized Early Warning Modelen_US
dc.subjectArtificial Neural Networken_US
dc.title使用SOM技術建構視覺化財務預警模型zh_TW
dc.titleVisualized Prediction Model of Financial Distress using Self Organization Mapen_US
dc.typeThesisen_US
dc.contributor.department財務金融研究所zh_TW
顯示於類別:畢業論文