Full metadata record
DC FieldValueLanguage
dc.contributor.authorBan, Jung-Chaoen_US
dc.contributor.authorChang, Chih-Hungen_US
dc.contributor.authorLin, Song-Sunen_US
dc.contributor.authorLin, Yin-Hengen_US
dc.date.accessioned2014-12-08T15:10:08Z-
dc.date.available2014-12-08T15:10:08Z-
dc.date.issued2009-01-15en_US
dc.identifier.issn0022-0396en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jde.2008.05.004en_US
dc.identifier.urihttp://hdl.handle.net/11536/7741-
dc.description.abstractThis study investigates the complexity of the global set of output patterns for one-dimensional multi-layer cellular neural networks with input. Applying labeling to the output space produces a sofic shift space. Two invariants, namely spatial entropy and dynamical zeta function, can be exactly computed by studying the induced sofic shift space. This study gives sofic shift a realization through a realistic model. Furthermore, a new phenomenon, the broken of symmetry of entropy, is discovered in multi-layer cellular neural networks with input. (C) 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectCellular neural networksen_US
dc.subjectSofic shiften_US
dc.subjectSpatial entropyen_US
dc.subjectDynamical zeta functionen_US
dc.titleSpatial complexity in multi-layer cellular neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jde.2008.05.004en_US
dc.identifier.journalJOURNAL OF DIFFERENTIAL EQUATIONSen_US
dc.citation.volume246en_US
dc.citation.issue2en_US
dc.citation.spage552en_US
dc.citation.epage580en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
Appears in Collections:Articles


Files in This Item:

  1. 000261714900005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.